Инструменты пользователя

Инструменты сайта


гелий

Гелий

Гелий Гелий – химический элемент с символом He и атомным номером 2. Это бесцветное вещество, не имеющее запаха и вкуса, нетоксичный, инертный, одноатомный газ, первый в группе благородных газов в периодической таблице. Его точка кипения является самой низкой среди всех элементов. После водорода, гелий является вторым самым легким и вторым наиболее распространенным элементом в наблюдаемой Вселенной, присутствуя на уровне около 24% от общей массы элементов, что более чем в 12 раз превышает массу всех более тяжелых элементов вместе взятых. Его изобилие связано с очень высокой энергией ядерной связи (на нуклон) гелия-4 по отношению к следующим трем элементам после гелия. Эта энергия связи гелия-4 также объясняет, почему гелий является продуктом как ядерного синтеза, так и радиоактивного распада. Большинство гелия во Вселенной находится в форме гелий-4, и, как полагают, он сформировался во время Большого взрыва. Большое количество нового гелия создается путем ядерного синтеза водорода в звездах. Гелий назван в честь греческого бога Солнца, Гелиоса. Гелий впервые был обнаружен как неизвестная желтая сигнатура спектральной линии в солнечном свете во время солнечного затмения в 1868 году Жоржем Райетом 1), капитаном К.Т. Хейгом, 2) Норманом Р. Погсоном и лейтенантом Джоном Хершелем.

Это наблюдение было впоследствии подтверждено французским астрономом Жюлем Янссеном 3). Янссену часто приписывают обнаружение этого элемента наряду с Норманном Локьером. Янссен записал спектральную линию гелия во время солнечного затмения 1868 года, в то время как Локьер наблюдал это явление из Британии. Локьер первым предложил, что эта линия связана с новым элементом, которому он и дал название гелий. Формальное открытие элемента было сделано в 1895 году двумя шведскими химиками, Пером Теодором Кливом и Нильсом Абрахамом Ланглетом, которые обнаружили гелий, исходящий из уранового рудного клевеита. В 1903 году, большие запасы гелия были обнаружены на месторождениях природного газа в некоторых частях Соединенных Штатов. На сегодняшний день, США является самым крупным поставщиком газа. Жидкий гелий используется в криогениках (его наибольшее единственное применение, поглощающее около четверти производства), в частности, при охлаждении сверхпроводящих магнитов, причем основное коммерческое применение связано с МРТ-сканерами. Другие промышленные применения гелия – в качестве газа для повышения давления и продувки в качестве защитной атмосферы для дуговой сварки и в таких процессах, как выращивание кристаллов для изготовления кремниевых пластин. Известное, но второстепенное использование гелия – в качестве подъемного газа для воздушных шаров и дирижаблей. Как и в случае любого газа, плотность которого отличается от плотности воздуха, вдыхание небольшого объема гелия временно изменяет тембр и качество человеческого голоса. В научных исследованиях, поведение двух жидких фаз гелия-4 (гелий I и гелий II) важно для исследователей, изучающих квантовую механику (в частности, свойство сверхтекучести), и для ученых, изучающих такие явления, как сверхпроводимость, в материи вблизи абсолютного нуля. На Земле гелий относительно редок – 5,2 ч.н.м. по объему в атмосфере. Сегодня большинство присутствующего на Земле гелия создается в ходе естественного радиоактивного распада тяжелых радиоактивных элементов (торий и уран, хотя есть и другие примеры), поскольку альфа-частицы, испускаемые такими распадами, состоят из ядер гелия-4. Этот радиогенный гелий захватывается природным газом в концентрациях до 7% по объему, из которого он извлекается коммерчески путем низкотемпературного разделения, называемого фракционной перегонкой. Раньше наземный гелий был невозобновляемым ресурсом, потому что, однажды выпущенный в атмосферу, он легко мог переместиться в космос, и считалось, что этот элемент является все более дефицитным. 4) Однако, недавние исследования показывают, что гелий, образовавшийся на Земле в результате радиоактивного распада, может собираться в запасах природного газа в больших количествах, чем ожидалось, в некоторых случаях высвобождаемых вулканической активностью 5).

История

Научные открытия

Первое свидетельство о существовании гелия было сделано 18 августа 1868 года. В спектре хромосферы Солнца наблюдалась ярко-желтая линия с длиной волны 587,49 нанометров. Эта линия была обнаружена французским астрономом Жюлем Янссеном во время полного солнечного затмения в Гунтуре, Индия. 6) Первоначально эта линия считалась натрием. 20 октября того же года, английский астроном Норман Локьер наблюдал желтую линию в спектре Солнца, которую он назвал линией D3 Fraunhofer, потому что она находилась вблизи известных линий D1 и D2 натрия. Ученый пришел к выводу, что эта линия была вызвана элементом Солнца, неизвестным на Земле. Локьер и английский химик Эдвард Франкленд назвали элемент греческим словом, обозначающим солнце, ἥλιος (helios). В 1881 году итальянский физик Луиджи Палмиери впервые обнаружил гелий на Земле через его спектральную линию D3, при анализе материала, который был сублимирован во время извержения горы Везувий. 7) 26 марта 1895 года шотландский химик сэр Уильям Рамсей изолировал гелий на Земле, обработав минеральный клевеит (целый ряд уранинитов с не менее 10% редкоземельных элементов) минеральными кислотами. Рамсей искал аргон, но после отделения азота и кислорода от газа, выделяемого серной кислотой, он заметил ярко-желтую линию, которая соответствовала линии D3, наблюдаемой в спектре Солнца. Эти образцы были идентифицированы как гелий Локкиром и британским физиком Уильямом Круксом. 8) Гелий был независимо изолирован от клевеита в том же году химиками Пером Теодором Клеве и Абрахамом Ланглетом в Уппсале, Швеция, которые собрали достаточно газа для точного определения его атомного веса. Гелий был также изолирован американским геохимиком Уильямом Фрэнсисом Хиллебрандом до открытия Рамсея, когда он заметил необычные спектральные линии при испытании образца минерального уранинита. Гиллебранд, однако, приписывал эти линии азоту 9). В 1907 году Эрнест Резерфорд и Томас Ройдс продемонстрировали, что альфа-частицы являются ядрами гелия, позволяя частицам проникать сквозь тонкую стеклянную стенку эвакуированной трубки, а затем создавая разряд в трубке для изучения спектров нового газа внутри. В 1908 году гелий был впервые сжижен голландским физиком Хайке Камерлингхом Оннесом путем охлаждения газа до температуры менее одного кельвина. Он попытался сделать газ твердым, еще больше снизив температуру, но потерпел неудачу, потому что гелий не затвердевает при атмосферном давлении. Студент Оннеса, Виллем Хендрик Кеесом, в конце концов, смог вызвать затвердевание 1 см3 гелия в 1926 году, добавив дополнительное внешнее давление 10). В 1938 году российский физик Петр Леонидович Капица обнаружил, что гелий-4 практически не имеет вязкости при температурах около абсолютного нуля, явление, которое теперь называется сверхтекучестью 11). Это явление связано с конденсацией Бозе-Эйнштейна. В 1972 году такое же явление наблюдалось относительно гелия-3, но при температурах, значительно более близких к абсолютному нулю, американскими физиками Дугласом Д. Ошероффом, Дэвидом М. Ли и Робертом К. Ричардсоном. Считается, что явление в гелии-3 связано со спариванием фермионов гелия-3 с образованием бозонов, по аналогии с куперовскими парами электронов, производящими сверхпроводимость.

Извлечение и использование

После операции по бурению нефтяных скважин в 1903 году в Декстере, штат Канзас, был произведен газовый гейзер, который не горел, и государственный геолог штата Канзас, Эразм Хауорт, собрал образцы улетучивающегося газа и взял их в Университет Канзаса в Лоуренсе, где, при помощи химиков Гамильтона Кади и Дэвида Макфарланда, он обнаружил, что газ состоял из 72% азота, 15% метана (горючий процент только с достаточным количеством кислорода), 1% водорода и 12% - неидентифицируемого газа. 12) При дальнейшем анализе, Кади и Макфарланд обнаружили, что 1,84% образца газа представляет собой гелий. Это показало, что, несмотря на его общую редкость на Земле, гелий концентрировался в больших количествах под американскими Великими равнинами, доступный для добычи в качестве побочного продукта природного газа 13). Это позволило Соединенным Штатам стать ведущим мировым поставщиком гелия. Следуя предложению сэра Ричарда Трелфалла, военно-морской флот Соединенных Штатов спонсировал три небольших экспериментальных гелиевых завода во время Первой мировой войны. Цель заключалась в снабжении воздушных шаров с заграждением невоспламеняющимся газом, более легким, чем воздух. В ходе этой программы, было произведено 5700 м3 (200 000 куб. футов) 92% гелия, хотя ранее было получено менее одного кубического метра этого газа [20]. Часть этого газа использовалась в первом в мире гелиевом дирижабле, C-7 ВМС США, который совершил свой первый рейс от Хэмптон роудс, штат Вирджиния, в Боллинг-Филд в Вашингтоне, округ Колумбия, 1 декабря 1921 года, 14) почти за два года до постройки первого жёсткого дирижабля, заполненного гелием, в сентябре 1923 года на заводе Shenandoah. Хотя процесс экстракции с использованием низкотемпературного сжижения газа не был развит в то время, во время Первой мировой войны, производство продолжалось. Гелий, в основном, использовался в качестве подъемного газа в летательных аппаратах более легких, чем воздух. Во время Второй мировой войны, спрос на гелий в качестве подъемного газа и для дуговой сварки с помощью экранирования увеличился. Гелиевый масс-спектрометр также имел большое значение в Манхеттенском проекте (кодовое название работы по созданию первой атомной бомбы в США в период второй мировой войны). Правительство Соединенных Штатов создало Национальный резерв гелия в 1925 году в Амарилло, штат Техас, с целью снабжения военных дирижаблей во время войны и коммерческих дирижаблей в мирное время. Из-за Закона о контроле гелия (1927), который запретил экспорт редкого гелия, на производство которого тогда имели монополию США, вместе с запретительной стоимостью газа, Гинденбург, как и все немецкие Цеппелины, был вынужден использовать водород в качестве подъемного газа. Рынок гелия после Второй мировой войны был подавлен, но его запасы были расширены в 1950-х годах, чтобы обеспечить поставку жидкого гелия в качестве хладагента для создания кислородно-водородного ракетного топлива (помимо других целей) во время «космической гонки» и холодной войны. Использование гелия в Соединенных Штатах в 1965 году было более чем в восемь раз больше пикового потребления военного времени. 15) После «поправок по гелийским актам 1960 года» (публичное право 86-777), Бюро Соединенных Штатов Америки организовало пять частных заводов по восстановлению гелия из природного газа. Для этой программы по сохранению гелия, Бюро построило 425-мильный (684-километровый) трубопровод из Буштона, штат Канзас, для соединения этих заводов с частично обедненным правительством газовым месторождением Клиффсайд вблизи Амарилло, штат Техас. Эту смесь гелий-азот впрыскивали и хранили в газовом поле Клиффсайд до тех пор, пока в ней не возникала необходимость, и за это время она еще больше очищалась. К 1995 году было собрано миллиард кубометров газа, а резерв составлял 1,4 млрд. долл. США в долгах, побудив Конгресс Соединенных Штатов в 1996 году ликвидировать резерв. «Закон о приватизации гелия 1996 года» (публичное право 104-273) вынуждает Департамент внутренних дел Соединенных Штатов высвободить резерв, и начать продажи с 2005 года. 16) Гелий, произведенный между 1930 и 1945 годами, имел приблизительно 98,3% чистоту (2% азота), что было достаточным для дирижаблей. В 1945 году для сварки было получено небольшое количество 99,9% гелия. К 1949 году было доступно коммерческое количество гелия класса А 99,95%. В течение многих лет, Соединенные Штаты производили более 90% коммерчески используемого гелия в мире, а добывающие установки в Канаде, Польше, России и других странах производили остальное. В середине 1990-х годов начал функционировать новый завод в Аржеве, Алжир, производящий 17 миллионов кубических метров (600 миллионов кубических футов гелия), с достаточным объемом добычи, чтобы покрыть все потребности Европы. Между тем, к 2000 году потребление гелия в США увеличилось до более 15 миллионов кг в год. В 2004-2006 годах были построены дополнительные заводы в Рас-Лаффане, Катаре и Скикде, Алжир. Алжир быстро стал вторым ведущим производителем гелия. За это время увеличилось как потребление гелия, так и затраты на производство гелия 17). С 2002 по 2007 гг. цены на гелий удвоились. По состоянию на 2012 год, на Национальный резерв гелия Соединенных Штатов приходилось 30 процентов мировых запасов гелия. Ожидается, что в 2018 году резерв закончится. Несмотря на это, предлагаемый законопроект в Сенате Соединенных Штатов позволит резерву продолжать продавать газ. Другие крупные запасы гелия находились в штате Хьюготон в Канзасе, США, и близлежащих газовых месторождениях в Канзасе, а также в выступах Техаса и Оклахомы. Новые гелиевые заводы должны были открыться в 2012 году в Катаре, в России и в штате Вайоминг в США, но не ожидалось, что они уменьшат дефицит. В 2013 году в Катаре началось строительство крупнейшей в мире установки гелия. 2014 год был широко признан годом избыточного предложения в гелиевом бизнесе, после многих лет нехватки. 18)

Характеристики

Гелий-атом

Гелий в квантовой механике

В перспективе квантовой механики, гелий является вторым простейшим атомом для моделирования, следуя за атомом водорода. Гелий состоит из двух электронов на атомных орбиталях, окружающих ядро, содержащее два протона и (обычно) два нейтрона. Как и в механике Ньютона, никакая система, состоящая из более чем двух частиц, не может быть решена с помощью точного аналитического математического подхода, и гелий не является исключением. Таким образом, требуются численные математические методы, даже для решения системы, состоящей из одного ядра и двух электронов. Такие методы вычислительной химии были использованы для создания квантово-механической картины электронного связывания гелия, точность которой составляет менее 2% от правильного значения на нескольких вычислительных этапах. Такие модели показывают, что каждый электрон в гелии частично экранирует одно ядро от другого, так что эффективный ядерный заряд Z, который видит каждый электрон, составляет около 1,69 единицы, а не 2 заряда классического «голого» ядра гелия.

Относительная стабильность ядра гелия-4 и электронная оболочка

Ядро атома гелия-4 идентично альфа-частице. Эксперименты по высокоэнергетическому электронному рассеянию показывают, что его заряд экспоненциально уменьшается с максимума в центральной точке, точно так же, как и плотность заряда собственного электронного облака гелия. Эта симметрия отражает аналогичную основную физику: пара нейтронов и пара протонов в ядре гелия подчиняются тем же квантовым механическим правилам, что и пара электронов гелия (хотя ядерные частицы подвержены другому ядерному связывающему потенциалу), так что все эти фермионы полностью занимают 1s-орбитали в парах, причем ни один из них не обладает орбитальным моментом, и каждый из них отменяет собственный спин другого. Добавление любой другой из этих частиц потребует углового момента и высвободит существенно меньшую энергию (фактически, ни одно ядро с пятью нуклонами не стабильно). Таким образом, эта схема энергетически чрезвычайно устойчива для всех этих частиц, и эта стабильность объясняет многие важные факты о гелии в природе. Например, стабильность и низкая энергия состояния электронного облака в гелии объясняют химическую инертность элемента, а также отсутствие взаимодействия атомов гелия друг с другом, создавая самые низкие температуры плавления и кипения всех элементов. Подобным же образом, особая энергетическая стабильность ядра гелия-4, создаваемая схожими эффектами, объясняет легкость производства гелия-4 в атомных реакциях, которые включают либо выброс тяжелых металлов, либо их синтез. Некоторое количество стабильного гелия-3 (2 протона и 1 нейтрон) образуется в реакциях синтеза из водорода, но это количество очень мало по сравнению с высокочувствительной энергией гелия-4. Необычная стабильность ядра гелия-4 также важна космологически: она объясняет тот факт, что в первые несколько минут после Большого Взрыва, во время создания «мешанины из свободных протонов и нейтронов», которые первоначально были созданы в соотношении примерно 6: 1, охлажденной до такой степени, что стало возможным ядерное связывание, почти все первые сформированные составные атомные ядра были ядрами гелия-4. связывание гелия-4 было настолько плотным, что производство гелия-4 потребляло почти все свободные нейтроны за несколько минут, прежде чем они могли быть подвергнуты бета-распаду, а также оставляя малое количество для образования более тяжелых атомов, таких как литий, бериллий или бор. Ядерное связывание гелия-4 на нуклон сильнее, чем у любого из этих элементов, и, таким образом, когда был образован гелий, для создания элементов 3, 4 и 5 не было энергичного привода. Для гелия было мало энергетически выгодно сплавляться в следующий элемент с меньшей энергией на нуклон, углерод. Однако, из-за отсутствия промежуточных элементов, этот процесс требует трех ядер гелия, поражающих друг друга почти одновременно. Таким образом, в течение нескольких минут после Большого взрыва не было времени для образования значительного количества углерода, прежде чем ранняя расширяющаяся Вселенная не охладилась до такой температуры и давления, при которой слияние гелия с углеродом было бы невозможно. Из-за этого, в ранней Вселенной было похожее на сегодняшнее соотношение водорода / гелия (3 части водорода к 1 части гелия-4 по массе), причем почти все нейтроны во вселенной захвачены гелием-4. Все более тяжелые элементы (включая элементы, которые необходимы для скалистых планет, таких как Земля, и для углеродной или других форм жизни), таким образом, были созданы после Большого взрыва в звездах, которые были достаточно горячими, чтобы сплавить сам гелий. Все элементы, кроме водорода и гелия, сегодня составляют лишь 2% от массы атомного вещества во Вселенной. Гелий-4, напротив, составляет около 23% от обычной материи Вселенной – почти все обычное вещество, которое не является водородом.

Газовые и плазменные фазы

Гелий является вторым наименее реактивным благородным газом после неона и, следовательно, вторым наименее реактивным из всех элементов. 19) Он инертен и моноатомичен во всех стандартных условиях. Из-за относительно низкой молярной (атомной) массы гелия, его теплопроводность, удельная теплоемкость и скорость звука в газовой фазе больше, чем у любого другого газа, кроме водорода. По этим причинам и из-за небольшого размера одноатомных молекул гелия, гелий диффундирует через твердые частицы со скоростью, в три раза превышающей скорость воздуха и составляющей около 65% от скорости водорода. Гелий является наименее водорастворимым одноатомным газом и одним из менее водорастворимых газов (CF4, SF6 и C4F8 имеют меньшую растворимость в мольной фракции: 0,3802, 0,4394 и 0,2372 x2 / 10-5 соответственно против 0,70797 x2 / 10-5 у гелия), кроме того, показатель преломления гелия ближе к единице, чем показатель преломления любого другого газа 20). Гелий имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре окружающей среды, что означает, что он нагревается, когда ему дают свободно расширяться. Только ниже своей температуры инверсии Джоуля-Томсона (примерно от 32 до 50 К при 1 атмосфере), гелий охлаждается при свободном расширении. После переохлаждения ниже этой температуры, гелий можно сжижать за счет охлаждения. Большинство внеземного гелия находится в плазменном состоянии и имеет свойства, совершенно отличные от свойств атомного гелия. В плазме, электроны гелия не связаны с его ядром, что приводит к очень высокой электропроводности даже в том случае, когда газ ионизируется лишь частично. На заряженные частицы сильно влияют магнитные и электрические поля. Например, в солнечном ветре вместе с ионизированным водородом, частицы взаимодействуют с магнитосферой Земли, приводя к токам Биркеланда и сиянию. 21)

Жидкий гелий

В отличие от любого другого элемента, гелий останется жидким до абсолютного нуля при нормальных давлениях. Это прямое влияние квантовой механики: в частности, энергия нулевой точки системы слишком велика, чтобы позволить осуществить заморозку. Для твердого гелия требуется температура 1-1,5 К (около -272 °С или -457 °F) при давлении около 25 бар (2,5 МПа) 22). Часто трудно отличить твердый гелий от жидкого, поскольку показатель преломления двух этих фаз почти одинаковый. Твердое вещество имеет чёткую температуру плавления и имеет кристаллическую структуру, но оно сильно сжимаемо; применение давления в лаборатории может уменьшить его объем более чем на 30%. При объемном модуле около 27 МПа, гелий в 100 раз более сжимаем, чем вода. Твердый гелий имеет плотность 0,214 ± 0,006 г / см3 при 1,15 К и 66 атм; прогнозируемая плотность при 0 К и 25 бар (2,5 МПа) составляет 0,187 ± 0,009 г / см3. При более высоких температурах, гелий будет затвердевать с достаточным давлением. При комнатной температуре, это требует около 114000 атм. 23)

Состояние гелия I

Ниже своей точки кипения, составляющей 4,22 кельвина и выше лямбда-точки 2.1768 кельвинов, изотопный гелий-4 существует в нормальном бесцветном жидком состоянии, называемом гелием I. Как и другие криогенные жидкости, гелий I закипает, когда он нагревается и сжимается, когда его температура снижается. Однако, ниже точки лямбда, гелий не кипит, и он расширяется по мере дальнейшего понижения температуры. Гелий I имеет газообразный показатель преломления 1,026, что настолько затрудняет рассмотрение его поверхности, что для наблюдения за его поверхностью часто используются всплывающие пенополистиролы. Эта бесцветная жидкость имеет очень низкую вязкость и плотность 0,145-0,125 г / мл (около 0-4 К), что составляет лишь одну четвертую от величины, ожидаемой от классической физики. Для объяснения этого свойства необходима квантовая механика, и поэтому оба состояния жидкого гелия (гелий I и гелий II) называются квантовыми жидкостями, что означает, что они проявляют атомные свойства в макроскопическом масштабе. Это может быть следствием того, что точка кипения гелия настолько близка к абсолютному нулю, что не дает случайному молекулярному движению (тепловой энергии) маскировать его атомные свойства.

Состояние гелия II

Жидкий гелий ниже его лямбда-точки (называемый гелием II) имеет очень необычные характеристики. Из-за его высокой теплопроводности, когда он кипит, он не пузырится, а испаряется непосредственно с поверхности. Гелий-3 также имеет сверхтекучую фазу, но только при гораздо более низких температурах; в результате, мало что известно о свойствах этого изотопа. Гелий II является сверхтекучей жидкостью и квантовомеханическим состоянием со странными свойствами. Например, когда он протекает через капилляры толщиной от 10-7 до 10-8 м, он не имеет измеримой вязкости. Однако, когда проводились измерения между двумя движущимися дисками, наблюдалась вязкость, сравнимая с вязкостью газообразного гелия. Настоящая теория объясняет это с помощью двухжидкостной модели для гелия II. В этой модели, жидкий гелий ниже точки лямбда рассматривается как вещество, содержащее часть атомов гелия в основном состоянии, которые являются сверхтекучими и текут с нулевой вязкостью, и часть атомов гелия в возбужденном состоянии, которые ведут себя как обычная жидкость. 24) В эффекте фонтанирования, построена камера, которая соединена с резервуаром гелия II спеченным диском, через который легко протекает сверхтекучий гелий, но через который не может проходить несверхтекучий гелий. Если внутренняя часть контейнера нагревается, сверхтекучий гелий переходит в не-сверхтекучий гелий. Для поддержания равновесной доли сверхтекучего гелия, сверхтекучий гелий протекает и увеличивает давление, вызывая выделение жидкости из контейнера. Теплопроводность гелия II больше, чем у любого другого известного вещества, в миллион раз больше, чем у гелия I и в несколько сотен раз больше, чем у меди. [20] Это связано с тем, что теплопроводность происходит за счет исключительного квантового механизма. Большинство материалов, которые проводят тепло, имеют валентную зону свободных электронов, которые служат для передачи тепла. Гелий II не имеет такой валентной зоны, но, тем не менее, хорошо проводит тепло. Поток тепла определяется уравнениями, которые аналогичны волновому уравнению, используемому для характеристики распространения звука в воздухе. Под воздействием тепла, он перемещается со скоростью 20 метров в секунду при 1,8 K через гелий II в виде волн в явлении, известном как второй звук. Гелий II также обладает «ползучим» эффектом. Когда поверхность проходит через уровень гелия II, гелий II движется по поверхности, против силы тяжести. Гелий II выйдет из незапечатанного сосуда, сползая по бокам, пока не достигнет более теплой области, где он испарится. Он перемещается в пленке толщиной 30 нм независимо от поверхностного материала. Эта пленка называется роллиновской пленкой в честь ученого, который впервые охарактеризовал это его качество, Бернарда В. Роллина. 25) В результате этого «ползучего» поведения и способности гелия II быстро протекать через крошечные отверстия, очень трудно ограничить жидкий гелий. Если контейнер не будет тщательно сконструирован, гелий II будет ползти по поверхности и через клапаны, пока он не достигнет более теплого участка, откуда он испарится. Волны, распространяющиеся по роллиновской пленке, регулируются тем же уравнением, что и гравитационные волны на мелководье, но вместо силы тяжести восстанавливающая сила представляет собой силу Ван-дер-Ваальса. Эти волны известны как третий звук. 26)

Изотопы

Существует девять известных изотопов гелия, но только гелий-3 и гелий-4 стабильны. В атмосфере Земли, на миллион атомов 4He приходится один атом 3He. В отличие от большинства элементов, изотопическое изобилие гелия сильно различается по происхождению из-за различных процессов формирования. Наиболее распространенный изотоп, гелий-4, производится на Земле в ходе альфа-распада более тяжелых радиоактивных элементов; образующиеся в результате этого альфа-частицы являются полностью ионизованными ядрами гелия-4. Гелий-4 является необычно устойчивым ядром, потому что его нуклоны расположены в полных оболочках. Он также был сформирован в огромных количествах при нуклеосинтезе большого взрыва 27). Гелий-3 присутствует на Земле только в следовых количествах; большая часть гелия-3 присутствует с момента образования Земли, хотя некоторая часть попадает на Землю, захваченная космической пылью. Следовые количества гелия также вырабатываются при бета-распаде трития 28). Скалы земной коры имеют изотопные отношения, изменяющиеся в десять раз, и эти соотношения могут быть использованы для исследования происхождения пород и состава мантии Земли. 3He гораздо более распространен в звездах как продукт ядерного синтеза. Таким образом, в межзвездной среде соотношение 3He к 4He примерно в 100 раз выше, чем на Земле. Экстрапланетный материал, такой как лунный и астероидный реголит, имеет следовые количества гелия-3 от бомбардировки солнечными ветрами. Поверхность Луны содержит гелий-3 при концентрациях порядка 10 чнм, что намного выше, чем приблизительно 5 чнм, обнаруженные в земной атмосфере. Ряд ученых, начиная с Джеральда Кульцински в 1986 году 29), предложили исследовать луну, собрать лунный реголит и использовать гелий-3 для слияния. Жидкий гелий-4 можно охладить примерно до 1 кельвина, используя испарительное охлаждение в горшке, температура в котором достигает 1 К. Аналогичное охлаждение гелия-3 с более низкой температурой кипения может достигать около 0,2 кельвинов в холодильнике с гелием-3. Равные смеси жидкого 3He и 4He с температурой ниже 0,8 К разделяются на две несмешивающиеся фазы из-за их несходства (они имеют разную квантовую статистику: атомы гелия-4 являются бозонами, в то время как атомы гелия-3 являются фермионами). В холодильных машинах, работающих на смеси криогенных веществ, эта несмесимость используется для достижения температуры в несколько милликельвинов. Можно производить экзотические изотопы гелия, которые быстро распадаются на другие вещества. Самый короткоживущий тяжелый изотоп гелия представляет собой гелий-5 с периодом полураспада 7,6 × 10-22 с. Гелий-6 распадается путем излучения бета-частицы и имеет период полураспада 0,8 секунды. Гелий-7 также излучает бета-частицу, а также гамма-луч. Гелий-7 и гелий-8 образуются в некоторых ядерных реакциях. Известно, что гелий-6 и гелий-8 обладают ядерным ореолом.

Соединения гелия

Гелий имеет валентность 0 и химически неактивен при всех нормальных условиях 30). Гелий является электрическим изолятором, если он не ионизирован. Как и другие благородные газы, гелий обладает метастабильными уровнями энергии, которые позволяют ему оставаться ионизированным в электрическом разряде с напряжением ниже его потенциала ионизации. Гелий может образовывать нестабильные соединения, известные как эксимеры, с вольфрамом, йодом, фтором, серой и фосфором, когда он подвергается тлеющему разряду, электронной бомбардировке или восстанавливается до плазмы другими способами. Таким образом были созданы молекулярные соединения HeNe, HgHe10 и WHe2 и молекулярные ионы He +2, He2 +2, HeH + и HeD +. HeH + также стабилен в своем основном состоянии, но является чрезвычайно реакционноспособным – он является самой сильной кислотой Бренстеда, и поэтому может существовать только изолированно, поскольку он будет протонировать любую молекулу или протианион, с которыми он вступает в контакт. Этот метод также создал нейтральную молекулу He2, которая имеет большое количество полосовых систем, и HgHe, который, по-видимому, удерживается вместе только поляризационными силами. Ван-дер-ваальсовы соединения гелия также могут образовываться с криогенным газом гелия и атомами какого-либо другого вещества, такого как LiHe и He2. Теоретически возможно наличие других истинных соединений, таких как фторгидрид гелия (HHeF), который был бы аналогичен HArF, обнаруженному в 2000 году. 31) Расчеты показывают, что два новых соединения, содержащие связь гелий-кислород, могут быть стабильными. Два новых молекулярных вида, предсказанные с использованием теории, CsFHeO и N(CH3)4FHeO, являются производными метастабильного FHeO-аниона, впервые предложенного в 2005 году группой из Тайваня. Если это подтвердится экспериментом, единственным оставшимся элементом без известных стабильных соединений будет неон 32). Атомы гелия были вставлены в молекулы полых углеродных каркасов (фуллеренов) путем нагревания под высоким давлением. Созданные эндоэдральные молекулы фуллерена стабильны при высоких температурах. Когда образуются химические производные этих фуллеренов, гелий остается внутри. Если используется гелий-3, его легко можно наблюдать с помощью спектроскопии ядерного магнитного резонанса гелия 33). Сообщалось обо многих фуллеренах, содержащих гелий-3. Хотя атомы гелия не связаны ковалентными или ионными связями, эти вещества обладают определенными свойствами и определенным составом, как и все стехиометрические химические соединения. При высоких давлениях, гелий может образовывать соединения с различными другими элементами. Кристаллы клатрата гелия-азота (He (N2) 11) выращивались при комнатной температуре при давлениях ок. 10 ГПа в камере высокого давления с алмазными наковальнями. Было показано, что изоляционный электролит Na2He термодинамически стабилен при давлениях выше 113 ГПа. Он имеет структуру флюорита 34).

Возникновение и производство

Естественное изобилие

Хотя гелий редко встречается на Земле, он является вторым наиболее распространенным элементом в известной Вселенной (после водорода), составляя 23% его массы бариона. Подавляющее большинство гелия образовалось путем нуклеосинтеза Большого взрыва через одну-три минуты после Большого Взрыва. Таким образом, измерения его распространенности вносят вклад в космологические модели. В звездах, гелий образуется путем ядерного слияния водорода в протон-протонных цепных реакциях и цикле CNO, части звездного нуклеосинтеза. В атмосфере Земли, концентрация гелия по объему составляет всего 5,2 части на миллион. 35) Концентрация низкая и довольно постоянная, несмотря на непрерывное производство нового гелия, потому что большинство гелия в атмосфере Земли поступает в космос в ходе нескольких процессов. В земной гетеросфере, части верхней атмосферы, гелий и другие более легкие газы являются наиболее распространенными элементами. Большая часть гелия на Земле является результатом радиоактивного распада. Гелий содержится в больших количествах в минералах урана и тория, включая клевеит, смолу, карнотит и монацит, поскольку они выделяют альфа-частицы (ядра гелия, He2 +), с которыми электроны немедленно связываются, как только частица останавливается камнем. Таким образом, во всей литосфере генерируется около 3000 метрических тонн гелия. 36) В земной коре, концентрация гелия составляет 8 частей на миллиард. В морской воде концентрация составляет всего 4 части на триллион. Небольшие количества гелия также присутствуют в минеральных источниках, вулканическом газе и метеорном железе. Поскольку гелий задерживается в недрах земли в условиях, при которых также задерживается природный газ, наибольшие природные концентрации гелия на планете содержатся в природном газе, из которого извлекается большинство коммерческого гелия. Концентрация гелия варьируется в широком диапазоне, от нескольких чнм до более 7% в небольшом газовом месторождении в округе Сан-Хуан, штат Нью-Мексико 37). По состоянию на 2011 год, мировые запасы гелия оценивались в 40 миллиардов кубических метров, при этом четверть этих запасов находилась на месторождении South Pars / North Dome Gas-Condensate, совместно принадлежащем Катару и Ирану. В 2015 и 2016 годах были объявлены более вероятные запасы в Скалистых горах в Северной Америке и в Восточной Африке 38).

Современная добыча и распределение

Для широкомасштабного использования, гелий извлекается путем фракционной перегонки из природного газа, что может содержать до 7% гелия. 39) Поскольку гелий имеет более низкую температуру кипения, чем любой другой элемент, низкую температуру и высокое давление используют для разжижения почти всех других газов (в основном, азота и метана). Полученный в результате этого сырой газообразный гелий очищают путем последовательных воздействий на понижение температуры, при котором почти весь остальной азот и другие газы осаждаются из газовой смеси. Активированный уголь используют в качестве конечной стадии очистки, обычно получая чистый гелий класса A 99,995%. Основная примесь в гелии класса А – это неон. На конечном этапе производства, большая часть произведенного гелия сжижается посредством криогенного процесса. Это необходимо для применений, требующих жидкого гелия, а также позволяет поставщикам гелия снизить стоимость транспортировки гелия на большие расстояния, так как крупнейшие контейнеры с жидким гелием имеют более чем в пять раз большую емкость самых больших газовых гелиевых прицепов. В 2008 году, приблизительно 169 миллионов стандартных кубических метров гелия были извлечены из природного газа или изъяты из запасов гелия, примерно 78% из Соединенных Штатов, 10% из Алжира и большая часть остатков – из России, Польши и Катара. К 2013 году, увеличение производства гелия в Катаре (компании RasGas под управлением Air Liquide) увеличило долю мирового производства гелия в Катаре до 25% и сделало эту страну вторым по величине экспортером гелия после Соединенных Штатов. 40) По оценкам, в 2016 году в Танзании было обнаружено около 54 миллиардов кубических футов (1,5 × 109 м3) гелия. В Соединенных Штатах, большая часть гелия извлекается из природного газа в Хьюготоне и близлежащих газовых месторождениях в Канзасе, Оклахома, и поле Panhandle в Техасе. 41) Большая часть этого газа когда-то направлялась по трубопроводу в Национальный гелиевый резерв, но с 2005 года этот резерв истощается и распродается, и ожидается, что он будет в значительной степени истощен к 2021 году, в соответствии с Законом об ответственном гелиевом и стратегическом руководстве, принятом в октябре 2013 года (HR 527). Диффузия сырого природного газа через специальные полупроницаемые мембраны и другие барьеры является еще одним способом восстановления и очистки гелия. 42) В 1996 году в США были обнаружены запасы гелия в таких комплексах газовых скважин, около 147 миллиардов стандартных кубических футов (4,2 миллиарда СКМ). По темпам использования в то время (72 миллиона СКМ в год в США), гелия было бы достаточно для использования в течение примерно 58 лет в США, и меньше этого (возможно, 80% времени) в мире, но факторы, влияющие на экономию и обработку, влияют на эффективные резервные показатели. Гелий должен быть извлечен из природного газа, потому что он присутствует в воздухе лишь на часть доли неона, но спрос на него намного выше. По оценкам, если бы вся неоновая продукция была переоборудована для сохранения гелия, то было бы удовлетворено 0,1% мировых потребностей в гелии. Аналогичным образом, только 1% мировых потребностей в гелии может быть удовлетворен путем переустановки всех установок для перегонки воздуха. Гелий может быть синтезирован путем бомбардировки лития или бора высокоскоростными протонами или бомбардировкой лития дейтронами, но эти процессы являются совершенно неэкономичными. Гелий коммерчески доступен либо в жидкой, либо в газообразной форме. В качестве жидкости, он может поставляться в небольших изолированных емкостях, называемых дьюарами, которые содержат до 1000 литров гелия, или в больших контейнерах ISO, которые имеют номинальную вместимость до 42 м3 (около 11 000 галлонов США). В газообразной форме, небольшие количества гелия продаются в цилиндрах высокого давления, вмещающие до 8 м3 (около 282 стандартных кубических футов) гелия, в то время как большие количества газа высокого давления поставляются в трубчатых прицепах, мощность которых равна 4,860 м3 (около 172 000 стандартных кубических футов).

Защита сохранности гелия

По словам защитников сохранности гелия, таких как физик-лауреат Нобелевской премии Роберт Коулман Ричардсон, пишущий в 2010 году, что свободная рыночная цена на гелий способствовала «расточительному» его использованию (например, для воздушных шаров из гелия). В 2000-х годах цены были снижены решением Конгресса США продать к 2015 году крупные запасы гелия в стране. По словам Ричардсона, цена должна быть умножена на 20, чтобы устранить чрезмерное истощение гелия. В своей книге «Будущее гелия как природного ресурса» (Routledge, 2012) Nuttall, Clarke & Glowacki (2012) также предложили создать Международное гелиевое агентство (IHA) для создания устойчивого рынка для этого драгоценного товара 43).

Области применения

В то время как воздушные шары являются, пожалуй, самым известным способом использования гелия, они составляют незначительную часть всего использования гелия. Гелий используется для многих целей, которые требуют некоторых его уникальных свойств, таких как низкая температура кипения, низкая плотность, низкая растворимость, высокая теплопроводность или инертность. Из общего мирового производства гелия 2014 года, около 32 миллионов кг (180 миллионов стандартных кубических метров) гелия в год, наибольшее использование (около 32% от общего объема в 2014 году) приходится на криогенные применения, большинство из которых связано с охлаждением сверхпроводящих магнитов в медицинских МРТ-сканерах и ЯМР-спектрометрах. Другими основными видами применения были системы повышения давления и продувки, сварка, поддержание контролируемой атмосферы и обнаружение утечек. Другие виды использования по категориям составляли относительно небольшие фракции. 44)

Контролируемые атмосферы

Гелий используется в качестве защитного газа в растущих кристаллах кремния и германия, в производстве титана и циркония и в газовой хроматографии, поскольку он инертен. Из-за своей инертности, тепловой и калорически совершенной природы, высокой скорости звука и высокого соотношения теплоемкости, он также полезен в сверхзвуковых аэродинамических трубах и импульсных установках.

Газовая вольфрамовая дуговая сварка

Гелий используется в качестве защитного газа в процессах дуговой сварки на материалах, которые при температурах сварки загрязняются и ослабляются воздухом или азотом. В газовой сварке вольфрамовой дугой используется ряд инертных защитных газов, но вместо дешевого аргона используется гелий, особенно для сварочных материалов с более высокой теплопроводностью, таких как алюминий или медь.

Менее распространенные использования

Промышленное обнаружение утечки

Одно из промышленных применений гелия – обнаружение утечки. Поскольку гелий диффундирует через твердые вещества в три раза быстрее, чем воздух, он используется в качестве газа-индикатора для обнаружения утечек в высоковакуумном оборудовании (например, криогенных резервуарах) и контейнерах высокого давления. 45) Испытуемое вещество помещают в камеру, которую затем эвакуируют и заполняют гелием. Гелий, который проходит через утечку, обнаруживается чувствительным устройством (гелиевым масс-спектрометром) даже при скоростях утечки 10-9 мбар · л / с (10-10 Па · м3 / с). Процедуру измерения обычно производят автоматически и называют интегральным тестом гелия. Простая процедура заключается в заполнении испытуемого объекта гелием и поиска утечки вручную с помощью ручного устройства. Просачивание гелия через трещины не следует путать с проникновением газа через сыпучий материал. В то время как гелий имеет задокументированные константы проницаемости (таким образом, расчетную скорость проникновения) через стекла, керамику и синтетические материалы, инертные газы, такие как гелий, не будут проникать в большинство крупных металлов. 46)

Полёты

Поскольку гелий легче воздуха, дирижабли и воздушные шары накачиваются этим газом для подъёма в воздух. В то время как газообразный водород является более способным держаться на поверхности и проникает через мембрану с меньшей скоростью, гелий имеет преимущество, являясь негорючим и действительно огнезащитным. Еще одно незначительное применение гелия – в ракетах, где гелий используется в качестве воздушной подушки для замещения топлива и окислителей в резервуарах для хранения и для конденсации водорода и кислорода для получения ракетного топлива. Он также используется для очистки топлива и окислителя от наземного вспомогательного оборудования до запуска и для предварительного охлаждения жидкого водорода на космических аппаратах. Например, для запуска ракеты «Сатурн-V», используемой в программе «Аполлон», потребовалось около 370 000 м3 (13 миллионов кубических футов) гелия.

Незначительные коммерческие и рекреационные использования

Гелий в качестве дыхательного газа не имеет никаких наркотических свойств, поэтому смеси гелия, такие как тримикс, гелиокс и гелиайр используются для глубокого погружения, чтобы уменьшить эффекты наркоза, которые ухудшаются с увеличением глубины. По мере увеличения давления на глубине, плотность дыхательного газа также увеличивается, а низкомолекулярный вес гелия значительно уменьшает усилие дыхания, уменьшая плотность смеси. Это уменьшает число потоков Рейнольдса, что приводит к уменьшению турбулентного потока и увеличению ламинарного потока, что требует меньше работы для дыхания. 47) На глубинах ниже 150 метров (490 футов), дайверы, вдыхающие гелий-кислородные смеси, начинают испытывать тремор и снижение психомоторной функции, нервный синдром, вызванный повышенным давлением. В какой-то степени этому эффекту может способствовать добавление некоторого количества наркотических газов, таких как водород или азот, в смесь гелий-кислород. Гелий-неоновые лазеры, тип маломощного газового лазера, образующего красный луч, имели различные практические применения, включая считыватели штрих-кодов и лазерные указатели, прежде чем они были практически повсеместно заменены более дешевыми диодными лазерами. Из-за своей инертности и высокой теплопроводности, прозрачности нейтронов и отсутствия образования радиоактивных изотопов в условиях реактора, гелий используется в качестве теплоносителя в некоторых ядерных реакторах с газовым охлаждением 48). Гелий, смешанный с более тяжелым газом, таким как ксенон, полезен для термоакустического охлаждения из-за полученного высокого коэффициента теплоемкости и низкого числа Прандтля. [133] Инерционность гелия имеет экологические преимущества по сравнению с традиционными холодильными системами, которые способствуют истощению озона или глобальному потеплению. Гелий также используется на некоторых жестких дисках.

Научные применения

Использование гелия уменьшает искажающие эффекты изменения температуры в пространстве между линзами в некоторых телескопах из-за его чрезвычайно низкого показателя преломления. Этот метод особенно используется в солнечных телескопах, где трубка телескопа с вакуумной изоляцией будет слишком тяжелой. 49) Гелий является широко используемым газом-носителем для газовой хроматографии. Возраст пород и минералов, содержащих уран и торий, можно оценить путем измерения уровня гелия в процессе, известном как датировка гелия. Гелий при низких температурах используется в криогениках и в некоторых применениях криогеники. В качестве примеров таких применений, жидкий гелий используется для охлаждения некоторых металлов до чрезвычайно низких температур, необходимых для сверхпроводимости, например, в сверхпроводящих магнитах для магнитно-резонансной томографии. Большой адронный коллайдер в ЦЕРНе использует 96 метрических тонн жидкого гелия для поддержания температуры 1,9 кельвина. 50)

Вдыхание и безопасность

Эффекты

Нейтральный гелий в стандартных условиях не токсичен, не играет никакой биологической роли и обнаруживается в следовых количествах в крови человека. Скорость звука в гелии почти в три раза превышает скорость звука в воздухе. Поскольку основная частота газонаполненной полости пропорциональна скорости звука в газе, когда гелий вдыхается, происходит соответствующее увеличение резонансных частот голосового тракта. Фундаментальная частота (иногда называемая тоном) не меняется, так как это происходит путем прямой вибрации голосовых складок, которая не изменяется. 51) Однако, более высокие резонансные частоты вызывают изменение в тембре, приводя к тонкому, утиноподобному звуку. Противоположный эффект, понижающий резонансные частоты, может быть получен при вдыхании плотного газа, такого как гексафторид серы или ксенон.

Опасности

Вдыхание гелияВдыхание избыточного количества гелия может быть опасным, поскольку гелий является простым удушающим веществом, которое смещает кислород, необходимый для нормального дыхания. 52) Были зарегистрированы смертельные случаи, включая молодых людей, задохнувшихся в Ванкувере в 2003 году, и двоих взрослых, задохнувшихся в Южной Флориде в 2006 году. В 1998 году австралийская девушка (ее возраст неизвестен) из Виктории упала без сознания и временно посинела после вдыхания всего содержимого баллона с гелием. 53) Вдыхание гелия непосредственно из баллонов под давлением или даже клапанов для наполнения баллонов чрезвычайно опасно, так как высокая скорость потока и давление могут привести к баротравме, смертельному повреждению легочной ткани. Смерть, вызванная гелием, встречается редко. Первым зарегистрированным в СМИ случаем был случай смерти 15-летней девочки из Техаса, которая умерла в 1998 году от вдыхания гелия на вечеринке у друга. В Соединенных Штатах в период с 2000 по 2004 годы сообщалось только о двух случаях смерти, в том числе о человеке, который умер в Северной Каролине от баротравмы в 2002 году. 54) Молодой человек задохнулся в Ванкувере в 2003 году, а 27-летний мужчина в Австралии имел эмболию после вдыхания газа из цилиндра в 2000 году. С тех пор, двое взрослых задохнулось в Южной Флориде в 2006 году, несколько случаев было зафиксировано в 2009 и 2010 годах, один – с калифорнийским юношей, найденным с мешком над головой, прикрепленным к гелиевому резервуару, а еще один – с подростком в Северной Ирландии, умершем от удушья. В Игл-Пойнте, штат Орегон, девочка-подросток умерла в 2012 году от баротравмы на вечеринке. Девочка из Мичигана умерла от гипоксии в конце того же года. 55) 4 февраля 2015 года выяснилось, что 28 января во время записи телевизионного шоу девичьей японской группы 3B Junior 12-летняя участница группы (имя которой было засекречено) пострадала от эмболии, потеряла сознание и впала в кому в результате пузырьков воздуха, заблокировавших кровоток в мозге, после вдыхания огромных количеств гелия. Инцидент не был обнародован вплоть до следующей недели. Сотрудники TV Asahi провели экстренную пресс-конференцию, чтобы сообщить, что девочку доставили в больницу и что она демонстрирует признаки реабилитации, такие как движение глаз и конечностей, но ее сознание еще недостаточно восстановлено. Полиция начала расследование из-за пренебрежения мерами безопасности. 56) Вопросы безопасности криогенного гелия аналогичны проблемам с жидким азотом; его чрезвычайно низкие температуры могут привести к холодным ожогам, а коэффициент расширения от жидкости к газу может вызвать взрывы, если не установлены устройства для сброса давления. Контейнеры гелиевого газа при 5-10 К следует обрабатывать так, как если бы они содержали жидкий гелий из-за быстрого и значительного теплового расширения, которое возникает, когда гелиевый газ при температуре менее 10 К нагревается до комнатной температуры. При высоких давлениях (более чем около 20 атм или два МПа), смесь гелия и кислорода (гелиокс) может привести к нервному синдрому высокого давления, своего рода обратному анестетическому эффекту; добавление небольшого количества азота в смесь может облегчить проблему. 57)

:Tags

Список использованной литературы:


1) Rayet, G. (1868) «Analyse spectral des protubérances observées, pendant l'éclipse totale de Soleil visible le 18 août 1868, à la presqu'île de Malacca» (Spectral analysis of the protuberances observed during the total solar eclipse, seen on 18 August 1868, from the Malacca peninsula), Comptes rendus … , 67 : 757–759. From p. 758: » … je vis immédiatement une série de neuf lignes brillantes qui … me semblent devoir être assimilées aux lignes principales du spectre solaire, B, D, E, b, une ligne inconnue, F, et deux lignes du groupe G.» ( … I saw immediately a series of nine bright lines that … seemed to me should be classed as the principal lines of the solar spectrum, B, D, E, b, an unknown line, F, and two lines of the group G.
2) Captain C. T. Haig (1868) «Account of spectroscopic observations of the eclipse of the sun, August 18th, 1868,» Proceedings of the Royal Society of London, 17 : 74–80. From p. 74: «I may state at once that I observed the spectra of two red flames close to each other, and in their spectra two broad bright bands quite sharply defined, one rose-madder and the other light golden.»
3) Rose, Melinda (October 2008). «Helium: Up, Up and Away?». Photonics Spectra. Retrieved February 27, 2010. For a more authoritative but older 1996 pie chart showing U.S. helium use by sector, showing much the same result, see the chart reproduced in «Applications» section of this article.
4) Witchalls, Clint (18 August 2010) Nobel prizewinner: We are running out of helium. New Scientist.
5) Sample, Ian (28 June 2016). «Huge helium gas find in east Africa averts medical shortage». The Guardian.
6) Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 175–179. ISBN 0-19-850341-5.
7) Ramsay, William (1895). «On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3, One of the Lines in the Coronal Spectrum. Preliminary Note». Proceedings of the Royal Society of London. 58 (347–352): 65–67. doi:10.1098/rspl.1895.0006
8) Lockyer, J. Norman (1895) «On the new gas obtained from uraninite,» Proceedings of the Royal Society of London, 58 : 67–70.
9) Hillebrand (1890) «On the occurrence of nitrogen in uraninite and on the composition of uraninite in general,» Bulletin of the U.S. Geological Survey, no. 78, pp. 43–79.
10) Rutherford, E.; Royds, T. (1908). «XXIV.Spectrum of the radium emanation». Philosophical Magazine. series 6. 16 (92): 313–317. doi:10.1080/14786440808636511
11) Kapitza, P. (1938). «Viscosity of Liquid Helium below the λ-Point». Nature. 141 (3558): 74. Bibcode:1938Natur.141…74K. doi:10.1038/141074a0
12) McFarland, D. F. (1903). «Composition of Gas from a Well at Dexter, Kan». Transactions of the Kansas Academy of Science. 19: 60–62. JSTOR 3624173. doi:10.2307/3624173
13) Cady, H. P.; McFarland, D. F. (1906). «Helium in Kansas Natural Gas». Transactions of the Kansas Academy of Science. 20: 80–81. JSTOR 3624645. doi:10.2307/3624645
14) Emme, Eugene M. comp., ed. (1961). «Aeronautics and Astronautics Chronology, 1920–1924». Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington, D.C.: NASA. pp. 11–19.
15) Williamson, John G. (1968). «Energy for Kansas». Transactions of the Kansas Academy of Science. Kansas Academy of Science. 71 (4): 432–438. JSTOR 3627447. doi:10.2307/3627447
16) «Executive Summary». nap.edu. Retrieved 2008-07-20.
17) Kaplan, Karen H. (June 2007). «Helium shortage hampers research and industry». Physics Today. American Institute of Physics. 60 (6): 31–32. Bibcode:2007PhT….60f..31K. doi:10.1063/1.2754594
18) «Middle East turmoil is disrupting a vital resource for nuclear energy, space flight and birthday balloons». washingtonpost.com. 26 June 2017. Retrieved 26 June 2017.
19) Watkins, Thayer. «The Old Quantum Physics of Niels Bohr and the Spectrum of Helium: A Modified Version of the Bohr Model». San Jose State University.
20) Scharlin, P.; Battino, R.; Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. (1998). «Solubility of gases in water: Correlation between solubility and the number of water molecules in the first solvation shell». Pure & Applied Chemistry. 70 (10): 1895–1904. doi:10.1351/pac199870101895
21) Stone, Jack A.; Stejskal, Alois (2004). «Using helium as a standard of refractive index: correcting errors in a gas refractometer». Metrologia. 41 (3): 189–197. Bibcode:2004Metro..41..189S. doi:10.1088/0026-1394/41/3/012
22) Buhler, F.; Axford, W. I.; Chivers, H. J. A.; Martin, K. (1976). «Helium isotopes in an aurora». J. Geophys. Res. 81 (1): 111–115. Bibcode:1976JGR….81..111B. doi:10.1029/JA081i001p00111
23) Henshaw, D. B. (1958). «Structure of Solid Helium by Neutron Diffraction». Physical Review Letters. 109 (2): 328–330. Bibcode:1958PhRv..109..328H. doi:10.1103/PhysRev.109.328
24) Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 6-120. ISBN 0-8493-0486-5.
25) Fairbank, H. A.; Lane, C. T. (1949). «Rollin Film Rates in Liquid Helium». Physical Review. 76 (8): 1209–1211. Bibcode:1949PhRv…76.1209F. doi:10.1103/PhysRev.76.1209
26) Ellis, Fred M. (2005). «Third sound». Wesleyan Quantum Fluids Laboratory. Retrieved 2008-07-23.
27) Bergman, D. (1949). «Hydrodynamics and Third Sound in Thin He II Films». Physical Review. 188 (1): 370–384. Bibcode:1969PhRv..188..370B. doi:10.1103/PhysRev.188.370
28) Anderson, Don L.; Foulger, G. R.; Meibom, A. (2006-09-02). «Helium Fundamentals». MantlePlumes.org. Retrieved 2008-07-20.
29) Slyuta, E. N.; Abdrakhimov, A. M.; Galimov, E. M. (2007). «The estimation of helium-3 probable reserves in lunar regolith» (PDF). Lunar and Planetary Science XXXVIII. Retrieved 2008-07-20.
30) Hedman, Eric R. (2006-01-16). «A fascinating hour with Gerald Kulcinski». The Space Review. Retrieved 2008-07-20.
31) Friedrich, Bretislav (8 April 2013). «A Fragile Union Between Li and He Atoms». Physics. 6: 42. doi:10.1103/Physics.6.42
32) Grochala, W. (2009). «On Chemical Bonding Between Helium and Oxygen». Polish Journal of Chemistry. 83: 87–122.
33) «Collapse of helium's chemical nobility predicted by Polish chemist» (PDF). Archived from the original (PDF) on 2009-03-19. Retrieved 2009-05-15.
34) Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A. (1992). «A high-pressure van der Waals compound in solid nitrogen-helium mixtures». Nature. 358 (6381): 46. doi:10.1038/358046a0
35) Oliver, B. M.; Bradley, James G. (1984). «Helium concentration in the Earth's lower atmosphere». Geochimica et Cosmochimica Acta. 48 (9): 1759–1767. Bibcode:1984GeCoA..48.1759O. doi:10.1016/0016-7037(84)90030-9
36) Aldrich, L. T.; Nier, Alfred O. (1948). «The Occurrence of He3 in Natural Sources of Helium». Phys. Rev. 74 (11): 1590–1594. Bibcode:1948PhRv…74.1590A. doi:10.1103/PhysRev.74.1590
37) Zartman, R. E.; Wasserburg, G. J.; Reynolds, J. H. (1961). «Helium Argon and Carbon in Natural Gases». Journal of Geophysical Research. 66 (1): 277–306. Bibcode:1961JGR….66..277Z. doi:10.1029/JZ066i001p00277
38) «Press release: The unbearable lightness of helium…». European Association of Geochemistry. Retrieved 5 March 2017.
39) «Huge helium gas find in east Africa averts medical shortage». The Guardian. Retrieved 5 March 2017.
40) Helium (PDF). Mineral Commodity Summaries. U.S. Geological Survey. 2009. pp. 74–75. Retrieved 2009-12-19.
41) Briggs, Helen (28 June 2016). «Helium discovery a 'game-changer'». BBC News. Retrieved 2016-06-28.
42) «Responsible Helium Administration and Stewardship Act (H.R. 527)». House Committee on Natural Resources. Committee on Natural Resources United States House of Representatives. Retrieved 5 March 2017.
43) Connor, Steve (2010-08-23). «Richard Coleman campaigning against US Congress' decision to sell all helium supplies by 2015». London: Independent.co.uk. Retrieved 2010-11-27.
44) Nuttall, William J.; Clarke, Richard H.; Glowacki, Bartek A. (2012). «Resources: Stop squandering helium». Nature. 485 (7400): 573–575. Bibcode:2012Natur.485..573N. PMID 22660302. doi:10.1038/485573a
45) Morris, C.I. (2001). Shock Induced Combustion in High Speed Wedge Flows (PDF). Stanford University Thesis. Archived from the original (PDF) on 2009-03-04.
46) Hablanian, M. H. (1997). High-vacuum technology: a practical guide. CRC Press. p. 493. ISBN 0-8247-9834-1.
47) Butcher, Scott J.; Jones, Richard L.; Mayne, Jonathan R.; Hartley, Timothy C.; Petersen, Stewart R. (2007). «Impaired exercise ventilatory mechanics with the self-contained breathing apparatus are improved with heliox». European Journal of Applied Physiology. Netherlands: Springer. 101 (6): 659–69. PMID 17701048. doi:10.1007/s00421-007-0541-5
48) Belcher, James R.; Slaton, William V.; Raspet, Richard; Bass, Henry E.; Lightfoot, Jay (1999). «Working gases in thermoacoustic engines». The Journal of the Acoustical Society of America. 105 (5): 2677–2684. Bibcode:1999ASAJ..105.2677B. PMID 10335618. doi:10.1121/1.426884
49) Jakobsson, H. (1997). «Simulations of the dynamics of the Large Earth-based Solar Telescope». Astronomical & Astrophysical Transactions. 13 (1): 35–46. Bibcode:1997A&AT…13…35J. doi:10.1080/10556799708208113
50) Engvold, O.; Dunn, R.B.; Smartt, R. N.; Livingston, W. C. (1983). «Tests of vacuum VS. helium in a solar telescope». Applied Optics. 22 (1): 10–12. Bibcode:1983ApOpt..22…10E. PMID 20401118. doi:10.1364/AO.22.000010
51) Ackerman, M. J.; Maitland, G. (1975). «Calculation of the relative speed of sound in a gas mixture». Undersea Biomed Res. 2 (4): 305–10. PMID 1226588. Retrieved 2008-08-09.
52) «Why does helium make your voice squeaky?». 2000-07-14. Retrieved 2013-06-08.
53) «Dangers of Helium Inhalation». Lou's Balloons.
54) «Helium Gas Safety & Data Sheet». bouncetime.
56) «テレビ番組収録中、12歳アイドルが意識失い救急搬送 ヘリウムガスが原因か» (in Japanese). 2015-02-04. Retrieved 2015-02-04.
57) «Japanese child star in coma after helium stunt goes wrong». BBC. 2015-02-05. Retrieved 2015-02-06.
  • Поддержите наш проект - обратите внимание на наших спонсоров:

  • Отправить "Гелий" в LiveJournal
  • Отправить "Гелий" в Facebook
  • Отправить "Гелий" в VKontakte
  • Отправить "Гелий" в Twitter
  • Отправить "Гелий" в Odnoklassniki
  • Отправить "Гелий" в MoiMir
  • Отправить "Гелий" в Google
  • Отправить "Гелий" в myAOL
гелий.txt · Последние изменения: 2017/06/27 17:21 — nataly

x

Будь первым!

Хочешь быть в курсе новых препаратов и научных исследований? Подпишись!

x

Будь в курсе!

Постой паровоз, подпишись на БЕСПЛАТНУЮ РАССЫЛКУ! Введи свой email и ты будешь всегда в курсе последних разработок и исследований: