Инструменты пользователя

Инструменты сайта


водород

Водород

ВодородВодород – химический элемент с символом H и атомным номером 1. Имея стандартный атомный вес около 1.008, водород является самым легким элементом в периодической таблице. Его одноатомная форма (Н) является наиболее распространенным химическим веществом во Вселенной, составляя примерно 75% всей массы бариона 1). Звезды, в основном, состоят из водорода в плазменном состоянии. Наиболее распространенный изотоп водорода, называемый протием (это название редко используется, символ 1Н), имеет один протон и ни одного нейтрона. Повсеместное появление атомарного водорода впервые произошло в эпоху рекомбинации. При стандартных температурах и давлении, водород представляет собой бесцветный, не имеющий запаха и вкуса, нетоксичный, неметаллический, легковоспламеняющийся двухатомный газ с молекулярной формулой H2. Поскольку водород легко образует ковалентные связи с большинством неметаллических элементов, большая часть водорода на Земле существует в молекулярных формах, таких как вода или органические соединения. Водород играет особенно важную роль в кислотно-щелочных реакциях, потому что большинство реакций на основе кислоты связаны с обменом протонов между растворимыми молекулами. В ионных соединениях, водород может принимать форму отрицательного заряда (то есть, аниона), при этом он известен как гидрид, или как положительно заряженный (т.е. катион) вид, обозначаемый символом H+. Катион водорода описывается как состоящий из простого протона, но на самом деле водородные катионы в ионных соединениях всегда более сложны. Являясь единственным нейтральным атомом, для которого уравнение Шредингера может быть решено аналитически, водород (а именно, изучение энергетики и связывания его атома) сыграл ключевую роль в развитии квантовой механики. Сначала водородный газ был искусственно получен в начале 16-го столетия реакцией кислот на металлы. В 1766-81 гг. Генри Кавендиш первым признал, что водородный газ является дискретным веществом 2), и что он производит воду при сжигании, благодаря чему он и был так назван: по-гречески водород означает «производитель воды». Промышленное производство водорода, в основном, связано с паровым преобразованием природного газа и, реже, с более энергоемкими методами, такими как электролиз воды. Большая часть водорода используется вблизи мест его производства, причем два наиболее распространенных использования – обработка ископаемого топлива (например, гидрокрекинг) и производство аммиака, в основном, для рынка удобрений. Водород вызывает озабоченность в металлургии, поскольку он может делать хрупкими многие металлы, что усложняет проектирование трубопроводов и резервуаров для хранения 3).

Свойства

Горение

Водородный газ (дигидроген или молекулярный водород) является легковоспламеняющимся газом, который будет гореть на воздухе в очень широком диапазоне концентраций от 4% до 75% по объему 4). Энтальпия горения составляет 286 кДж / моль:

  • 2 H2 (g) + O2 (g) → 2 H2O (l) + 572 кДж (286 кДж / моль)

Водородный газ образует взрывоопасные смеси с воздухом в концентрациях от 4-74% и с хлором в концентрациях до 5,95%. Взрывоопасные реакции могут быть вызваны искрами, теплом или солнечным светом. Температура самовоспламенения водорода, температура спонтанного воспламенения на воздухе, составляет 500 °C (932 °F) 5). Чистые водородно-кислородные пламени испускают ультрафиолетовое излучение и с высокой кислородной смесью почти невидимы невооруженным глазом, о чем свидетельствует слабый шлейф главного двигателя космического челнока по сравнению с хорошо видимым шлейфом космического челночного твердого ракетного усилителя, который использует композит перхлората аммония. Для обнаружения утечки горящего водорода может потребоваться детектор пламени; такие утечки могут быть очень опасными. Водородное пламя в других условиях является синим, и напоминает голубое пламя природного газа. Гибель дирижабля «Гинденбург» представляет собой печально известный пример сжигания водорода, и дело по-прежнему обсуждается. Видимое оранжевое пламя в этом инциденте было вызвано воздействием смеси водорода с кислородом в сочетании с соединениями углерода из кожи дирижабля. H2 реагирует с каждым окисляющим элементом. Водород может спонтанно реагировать при комнатной температуре с хлором и фтором с образованием соответствующих галогенидов водорода, хлористого водорода и фтористого водорода, которые также являются потенциально опасными кислотами.

Уровни энергии электронов

Уровень энергии основного состояния электрона в атоме водорода составляет -13,6 эВ, что эквивалентно ультрафиолетовому фотону с длиной волны около 91 нм 6). Энергетические уровни водорода могут быть рассчитаны достаточно точно с использованием боровской модели атома, которая концептуализирует электрон как «орбитальный» протон по аналогии с земной орбитой Солнца. Однако, атомный электрон и протон удерживаются вместе электромагнитной силой, а планеты и небесные объекты удерживаются гравитацией. Из-за дискретизации углового момента, постулированного в ранней квантовой механике Бором, электрон в модели Бора может занимать только определенные допустимые расстояния от протона и, следовательно, только определенные допустимые энергии. Более точное описание атома водорода происходит из чисто квантовомеханической обработки, в которой используется уравнение Шредингера, уравнение Дирака или даже интегральная схема Фейнмана для вычисления плотности распределения вероятности электрона вокруг протона. Наиболее сложные методы обработки позволяют получить небольшие эффекты специальной теории относительности и поляризации вакуума. В квантовой механической обработке, электрон в атоме водорода основного состояния вообще не имеет вращательного момента, что иллюстрирует, как «планетарная орбита» отличается от движения электрона.

Элементарные молекулярные формы

Существуют два разных спиновых изомера двухатомных молекул водорода, которые отличаются относительным спином их ядер. В ортоводородной форме, спины двух протонов параллельны и образуют триплетное состояние с молекулярным спиновым квантовым числом 1 (1/2 + 1/2); в форме параводорода, спины антипараллельны и образуют синглет с молекулярным спиновым квантовым числом 0 (1/2 1/2). При стандартной температуре и давлении, газообразный водород содержит около 25% пара-формы и 75% орто-формы, также известной как «нормальная форма» 7). Равновесное отношение ортоводорода к параводороду зависит от температуры, но, поскольку орто-форма является возбужденным состоянием и имеет более высокую энергию, чем пара-форма, она неустойчива и не может быть очищена. При очень низких температурах, состояние равновесия состоит почти исключительно из пара-формы. Тепловые свойства жидкой и газовой фазы чистого параводорода значительно отличаются от свойств нормальной формы из-за различий во вращательных теплоемкостях, что более подробно обсуждается в спиновых изомерах водорода. Орто / парное различие также встречается в других водородсодержащих молекулах или функциональных группах, таких как вода и метилен, но это имеет малое значение для их тепловых свойств. 8) Некатализированное взаимопревращение между пара и орто H2 увеличивается с повышением температуры; таким образом, быстро сконденсированная Н2 содержит большие количества ортогональной формы высоких энергий, которая очень медленно преобразуется в пара-форму. [29] Коэффициент орто / пара в конденсированном H2 является важным фактором при приготовлении и хранении жидкого водорода: превращение из орто в пара является экзотермическим и дает достаточно тепла для испарения части водородной жидкости, что приводит к потере сжиженного материала. Катализаторы для орто-пара-конверсии, такие как оксид железа, активированный уголь, платинированный асбест, редкоземельные металлы, соединения урана, оксид хрома или некоторые соединения никеля, используются при охлаждении водородом.

Фазы

  • Газообразный водород
  • Жидкий водород
  • Шугообразный водород
  • Твёрдый водород
  • Металлический водород

Соединения

Ковалентные и органические соединения

В то время как H2 не очень реакционноспособен в стандартных условиях, он образует соединения с большинством элементов. Водород может образовывать соединения с элементами, которые являются более электроотрицательными, такими как галогены (например, F, Cl, Br, I) или кислород; в этих соединениях, водород принимает частичный положительный заряд. При связывании со фтором, кислородом или азотом, водород может участвовать в форме нековалентной связи средней силы с водородом других подобных молекул, явление, называемое водородной связью, которое имеет решающее значение для устойчивости многих биологических молекул. Водород также образует соединения с менее электроотрицательными элементами, такими как металлы и металлоиды, где он принимает частичный отрицательный заряд. Эти соединения часто известны как гидриды. Водород образует обширное множество соединений с углеродом, называемые углеводородами, и еще большее множество соединений – с гетероатомами, которые, из-за их общей связи с живыми существами, называются органическими соединениями. Изучением их свойств занимается органическая химия, и их исследование в контексте живых организмов известно как биохимия 9). По некоторым определениям, «органические» соединения должны содержать только углерод. Однако, большинство из них также содержат водород, и поскольку это углерод-водородная связь, которая придает этому классу соединений большую часть их конкретных химических характеристик, углерод-водородные связи требуются в некоторых определениях слова «органические» в химии. Известны миллионы углеводородов, и они обычно образуются сложными синтетическими путями, которые редко включают элементарный водород.

Гидриды

Соединения водорода часто называют гидридами. Термин «гидрид» предполагает, что атом Н приобрел отрицательный или анионный характер, обозначенный H-, и используется, когда водород образует соединение с более электроположительным элементом. Существование гидридного аниона, предложенное Гилбертом Н. Льюисом в 1916 году для солесодержащих гидридов группы 1 и 2, было продемонстрировано Моерсом в 1920 г. электролизом расплавленного гидрида лития (LiH), производя стехиометрическое количество водорода на анод. 10) Для гидридов, отличных от металлов группы 1 и 2, этот термин вводит в заблуждение, учитывая низкую электроотрицательность водорода. Исключением в гидридах группы 2 является BeH2, который является полимерным. В литийалюминийгидриде, AlH-4 анион несет гидридные центры, прочно прикрепленные к Al (III). Хотя гидриды могут образовываться почти во всех элементах основной группы, количество и комбинация возможных соединений сильно различаются; например, известно более 100 бинарных гидридов борана и только один бинарный гидрид алюминия. Бинарный гидрид индия еще не идентифицирован, хотя существуют большие комплексы 11). В неорганической химии, гидриды могут также служить в качестве мостиковых лигандов, которые связывают два металлических центра в координационном комплексе. Эта функция особенно характерна для элементов группы 13, особенно в боранах (гидридах бора) и алюминиевых комплексах, а также в кластеризованных карборанах.

Протоны и кислоты

Окисление водорода удаляет его электрон и дает Н+, который не содержит электронов и ядра, которое обычно состоит из одного протона. Вот почему H+ часто называют протоном. Этот вид является центральным для обсуждения кислот. Согласно теории Бронстеда-Лоури, кислоты являются донорами протонов, а основания являются акцепторами протонов. Голый протон, H+, не может существовать в растворе или в ионных кристаллах из-за его непреодолимого притяжения к другим атомам или молекулам с электронами. За исключением высоких температур, связанных с плазмой, такие протоны не могут быть удалены из электронных облаков атомов и молекул и будут оставаться прикрепленными к ним. Однако, термин «протон» иногда используется метафорически для обозначения положительно заряженного или катионного водорода, присоединенного к другим видам таким образом, и как таковой, обозначается как «Н+» без какого-либо значения, что любые отдельные протоны существуют свободно как вид. Чтобы избежать появления голого «сольватированного протона» в растворе, иногда считается, что кислые водные растворы содержат менее маловероятные фиктивные виды, называемые «ионом гидрониума» (H 3О+). Однако, даже в этом случае такие сольватированные катионы водорода более реалистично воспринимаются как организованные кластеры, которые образуют виды, близкие к H 9O+4. [43] Другие ионы оксония обнаруживаются, когда вода находится в кислом растворе с другими растворителями [44]. Несмотря на свою экзотичность на Земле, одним из наиболее распространенных ионов во Вселенной является H+3, известный как протонированный молекулярный водород или катион тригидрогена [45].

Изотопы

 Водород имеет три естественных изотопа, обозначенных 1H, 2H и 3H Водород имеет три естественных изотопа, обозначенных 1H, 2H и 3H. Другие, сильно неустойчивые ядра (от 4H до 7H) были синтезированы в лаборатории, но не наблюдались в природе. 12) 1H является наиболее распространенным изотопом водорода с распространенностью более 99,98%. Поскольку ядро этого изотопа состоит только из одного протона, ему дается описательное, но редко используемое формальное имя протий. 2H, другой стабильный изотоп водорода, известен как дейтерий и содержит один протон и один нейтрон в ядре. Считается, что весь дейтерий во Вселенной был произведен во время Большого взрыва и существует с того времени до сих пор. Дейтерий не является радиоактивным элементом и не представляет значительной опасности токсичности. Вода, обогащенная молекулами, которые включают дейтерий вместо нормального водорода, называется тяжелой водой. Дейтерий и его соединения используются в качестве нерадиоактивной метки в химических экспериментах и в растворителях для 1H-ЯМР-спектроскопии. Тяжелая вода используется как замедлитель нейтронов и охлаждающая жидкость для ядерных реакторов. Дейтерий также является потенциальным топливом для коммерческого ядерного синтеза. 3H известен как тритий и содержит один протон и два нейтрона в ядре. Он радиоактивен, распадается на гелий-3 через бета-распад с периодом полураспада 12,32 года. Он настолько радиоактивен, что его можно использовать в светящейся краске, что делает его полезным при изготовлении, например, часов со светящимся циферблатом. Стекло предотвращает выход небольшого количества излучения. Небольшое количество трития образуется естественным путем при взаимодействии космических лучей с атмосферными газами; тритий также высвобождался во время испытаний ядерного оружия 13). Он используется в реакциях ядерного синтеза в качестве индикатора изотопной геохимии и в специализированных осветительных устройствах с автономным питанием. Тритий также использовался в экспериментах по химической и биологической маркировке в качестве радиоактивной метки. Водород – единственный элемент, который имеет разные названия для его изотопов, которые сегодня широко используются. Во время раннего изучения радиоактивности, различным тяжелым радиоактивным изотопам давались собственные названия, но такие названия больше не используются, за исключением дейтерия и трития. Символы D и T (вместо 2H и 3H) иногда используются для дейтерия и трития, но соответствующий символ для протия P уже используется для фосфора и, следовательно, недоступен для протия 14). В своих номенклатурных руководящих принципах, Международный союз чистой и прикладной химии позволяет использовать любые символы из D, T, 2H и 3H, хотя предпочтительными являются 2H и 3H. Экзотический атом мюоний (символ Mu), состоящий из антимюона и электрона, также иногда рассматривается как легкий радиоизотоп водорода из-за разности масс между антимюоном и электроном, который был обнаружен в 1960 году. Во время жизни мюона, 2,2 мкс, мюоний может входить в такие соединения, как хлорид мюония (MuCl) или мюонид натрия (NaMu), аналогично хлориду водорода и гидриду натрия соответственно.

История

Открытие и использование

В 1671 году Роберт Бойл открыл и описал реакцию между железными опилками и разбавленными кислотами, которая приводит к получению газообразного водорода 15). В 1766 году Генри Кавендиш первым признал водородный газ в качестве дискретного вещества, назвав этот газ из-за метал-кислотной реакции «легковоспламеняющимся воздухом». Он предположил, что «легковоспламеняющийся воздух» был фактически идентичен гипотетическому веществу, названному «флогистоном», и еще раз обнаружил в 1781 году, что газ вырабатывает воду при сжигании. Считается, что именно он открыл водород как элемент. В 1783 году Антуан Лавуазье дал этому элементу название водород (от греческого ὑδρο-hydro означает «вода» и -γενής гены, что означает «создатель»), когда он и Лаплас воспроизвели данные Кавендиша о том, что при сжигании водорода образуется вода. Лавуазье производил водород для своих экспериментов по сохранению массы путем реакции потока пара с металлическим железом через лампу накаливания, нагретую в огне. Анаэробное окисление железа протонами воды при высокой температуре может быть схематически представлено набором следующих реакций:

  • Fe + H2O → FeO + H2
  • 2 Fe + 3 H2O → Fe2O3 + 3 H2
  • 3 Fe + 4 H2O → Fe3O4 + 4 H2

Многие металлы, такие как цирконий, подвергаются аналогичной реакции с водой, приводящей к получению водорода. Водород был сжижен в первый раз Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и его изобретения, вакуумной колбы. В следующем году он произвел твердый водород. Дейтерий был обнаружен в декабре 1931 года Гарольдом Юреем, а тритий был подготовлен в 1934 году Эрнестом Рутерфордом, Марком Олифантом и Полом Хартеком. Тяжелая вода, которая состоит из дейтерия вместо обычного водорода, была обнаружена группой Юрея в 1932 году. Франсуа Исаак де Риваз построил первый двигатель «Риваз», двигатель внутреннего сгорания, приводимый в движение водородом и кислородом, в 1806 году. Эдвард Даниэль Кларк изобрел водородную газовую трубу в 1819 году. Огниво Дёберейнера (первая полноценная зажигалка) было изобретено в 1823 году. Первый водородный баллон был изобретен Жаком Чарльзом в 1783 году. Водород обеспечил подъем первой надежной формы воздушного движения после изобретения в 1852 году первого поднятого водородом дирижабля Анри Гиффарда. Немецкий граф Фердинанд фон Цеппелин продвигал идею жестких дирижаблей, поднимаемых в воздух водородом, которые позже назывались Цеппелинами; первый из них впервые взлетел в воздух в 1900 году. Регулярно запланированные рейсы начались в 1910 году и к началу Первой мировой войны в августе 1914 года они перенесли 35000 пассажиров без серьезных инцидентов. Во время войны, водородные дирижабли использовались в качестве наблюдательных платформ и бомбардировщиков. Первый беспосадочный трансатлантический перелет был произведен британским дирижаблем R34 в 1919 году. Регулярное пассажирское обслуживание возобновилось в 1920-х годах, и открытие запасов гелия в Соединенных Штатах должно было повысить безопасность перелетов, но правительство США отказалось продавать газ для этой цели, поэтому H2 использовался в дирижабле Гинденбурга, который был уничтожен в результате пожара в Милане в Нью-Джерси 6 мая 1937 года. 16) Инцидент транслировался в прямом эфире по радио и проводились видеосъемки. Широко предполагалось, что причиной воспламенения была утечка водорода, однако последующие исследования указывают на воспламенение алюминизированного тканевого покрытия статическим электричеством. Но к этому времени репутации водорода как подъемного газа был уже нанесен ущерб. В том же году, вступил в эксплуатацию первый водородно-охлаждаемый турбогенератор с газообразным водородом в качестве хладагента в роторе и статором в 1937 году в Дейтоне, Огайо, компанией Dayton Power & Light Co; из-за теплопроводности водородного газа, это самый распространенный газ для использования в этой области сегодня. Никель-водородная батарея была впервые использована в 1977 году на борту навигационного технологического спутника-2 США (NTS-2). МКС, Mars Odyssey и Mars Global Surveyor оснащены никель-водородными батареями. В темной части своей орбиты, Космический телескоп Хаббла также питается никель-водородными батареями, которые были окончательно заменены в мае 2009 года, более чем через 19 лет после запуска и через 13 лет после их проектирования. 17)

Роль в квантовой теории

Из-за своей простой атомной структуры, состоящей только из протона и электрона, атом водорода вместе со спектром света, созданного из него или поглощенного им, был центральным в развитии теории атомной структуры 18). Кроме того, изучение соответствующей простоты молекулы водорода и соответствующего катиона Н+2 привело к пониманию природы химической связи, которая последовала вскоре физической обработки атома водорода в квантовой механике в середине 2020 г. Одним из первых квантовых эффектов, которые явно наблюдались (но не были поняты в то время), было наблюдение Максвелла с участием водорода за полвека до того, как появилась полная квантовомеханическая теория. Максвелл отметил, что удельная теплоемкость Н2 необратимо отходит от двухатомного газа ниже комнатной температуры и начинает все больше напоминать удельную теплоемкость одноатомного газа при криогенных температурах. Согласно квантовой теории, такое поведение возникает из-за расстояния (квантованных) уровней вращательной энергии, которые особенно широко расставлены в H2 из-за его низкой массы. Эти широко расставленные уровни препятствуют равному разделению тепловой энергии на вращательное движение в водороде при низких температурах. Диатомовые газы, состоящие из более тяжелых атомов, не имеют таких широко расставленных уровней и не проявляют такого же эффекта. Антиводород является антиматериальным аналогом водорода. Он состоит из антипротона с позитроном. Антиводород является единственным типом атома антивещества, который был получен по состоянию на 2015 год. 19)

Нахождение в природе

Водород является самым распространенным химическим элементом во Вселенной, составляя 75% нормального вещества по массе и более 90% по количеству атомов. (Большая часть массы вселенной, однако, находится не в форме этого химического элемента, а считается, что имеет еще необнаруженные формы массы, такие как темная материя и темная энергия.) Этот элемент находится в большом изобилии в звездах и газовых гигантах. Молекулярные облака Н2 связаны со звездообразованием. Водород играет жизненно важную роль при включении звезд через протон-протонную реакцию и ядерный синтез цикла CNO 20). Во всем мире, водород встречается, в основном, в атомном и плазменном состояниях со свойствами, совершенно отличными от свойств молекулярного водорода. В качестве плазмы, электрон и протон водорода не связаны друг с другом, что приводит к очень высокой электропроводности и высокой излучательной способности (вырабатывая свет от Солнца и других звезд). На заряженные частицы сильно влияют магнитные и электрические поля. Например, в солнечном ветре они взаимодействуют с магнитосферой Земли, создавая течения Биркеланда и полярное сияние. Водород находится в нейтральном атомном состоянии в межзвездной среде. Считается, что большое количество нейтрального водорода, обнаруженного в затухающих системах Лимана-альфа, доминирует в космологической барионной плотности Вселенной до красного смещения z = 4. В обычных условиях на Земле, элементарный водород существует как двухатомный газ, H2. Однако, водородный газ очень редок в земной атмосфере (1 чнм по объему) из-за его легкого веса, что позволяет ему легче преодолевать гравитацию Земли, чем более тяжелые газы. Однако, водород является третьим наиболее распространенным элементом на поверхности Земли, 21) существуя, в основном, в виде химических соединений, таких как углеводороды и вода. Водородный газ образуется некоторыми бактериями и водорослями и является естественным компонентом флюта, как и метан, который является все более значимым источником водорода. Молекулярная форма, называемая протонированным молекулярным водородом (H+3) находится в межзвездной среде, где она генерируется ионизацией молекулярного водорода из космических лучей. Этот заряженный ион также наблюдался в верхней атмосфере планеты Юпитер. Ион относительно устойчив в окружающей среде из-за низкой температуры и плотности. H+3 является одним из самых распространенных ионов во Вселенной и играет заметную роль в химии межзвездной среды. Нейтральный триатомный водород H3 может существовать только в возбужденной форме и неустойчив 22). Напротив, положительный молекулярный ион водорода (Н+2) является редкой молекулой во Вселенной.

Производство водорода

H2 производится в химических и биологических лабораториях, часто в качестве побочного продукта других реакций; в промышленности для гидрирования ненасыщенных субстратов; и в природе как средство вытеснения восстановительных эквивалентов в биохимических реакциях.

Паровой риформинг

Водород может быть получен несколькими способами, но экономически наиболее важные процессы включают удаление водорода из углеводородов, так как около 95% производства водорода в 2000 году поступило из парового риформинга 23). Коммерчески, большие объемы водорода обычно получают путем парового риформинга природного газа. При высоких температурах (1000-1400 K, 700-1100 °C или 1300-2000 °F) пар (водяной пар) реагирует с метаном с получением монооксида углерода и H2.

  • СН4 + H2O → CO + 3 H2

Эта реакция лучше проходит при низких давлениях, но, тем не менее, её можно проводить и при высоких давлениях (2,0 МПа, 20 атм или 600 дюймов ртутного столба). Это связано с тем, что H2 с высоким давлением является наиболее популярным продуктом, а системы очистки от перегрева под давлением лучше работают при более высоких давлениях. Смесь продуктов известна как «синтез-газ», поскольку она часто используется непосредственно для получения метанола и родственных соединений. Углеводороды, отличные от метана, могут быть использованы для получения синтез-газа с различными соотношениями продуктов. Одним из многочисленных осложнений этой высокооптимизированной технологии является образование кокса или углерода:

  • СН4 → C + 2 H2

Следовательно, паровой риформинг обычно использует избыток H2О. Дополнительный водород может быть извлечен из пара с использованием монооксида углерода через реакцию смещения водяного газа, особенно с использованием катализатора оксида железа. Эта реакция также является общим промышленным источником углекислого газа:

  • CO + H2O → CO2 + H2

Другие важные методы для H2 включают частичное окисление углеводородов: 24)

  • 2 CH4 + O2 → 2 CO + 4 H2

И реакция угля, которая может служить прелюдией к реакции сдвига, описанной выше:

  • C + H2O → CO + H2

Иногда водород производится и потребляется в том же промышленном процессе, без разделения. В процессе Хабера для производства аммиака, водород генерируется из природного газа. Электролиз солевого раствора для получения хлора также приводит к образованию водорода в качестве побочного продукта 25).

Металлическая кислота

В лаборатории, Н2 обычно получают реакцией разбавленных неокисляющих кислот на некоторые реакционноспособные металлы, такие как цинк с аппаратом Киппа.

  • Zn + 2 H + → Zn2 + + H2

Алюминий также может производить H2 при обработке основаниями:

  • 2 Al + 6 H2O + 2 OH- → 2 Al (OH) -4 + 3 H2

Электролиз воды представляет собой простой способ получения водорода. Через воду протекает ток низкого напряжения, и на аноде образуется газообразный кислород, в то время как на катоде образуется газообразный водород. Обычно катод изготавливают из платины или другого инертного металла при производстве водорода для хранения. Если, однако, газ должен быть сожжен на месте, для содействия сгоранию желательно присутствие кислорода, и поэтому оба электрода будут изготовлены из инертных металлов. (Например, железо окисляется и, следовательно, уменьшает количество выделяемого кислорода). Теоретическая максимальная эффективность (электричество, используемое по отношению к энергетической величине производимого водорода) находится в диапазоне 80-94%. 26)

  • 2 Н2О (L) → 2 H2 (g) + O2 (g)

Сплав алюминия и галлия в форме гранул, добавленных в воду, можно использовать для получения водорода. Этот процесс также производит оксид алюминия, но дорогой галлий, который предотвращает образование оксидной кожи на гранулах, может быть повторно использован. Это имеет важные потенциальные последствия для экономики водорода, поскольку водород может быть получен на месте и не нуждается в транспортировке.

Термохимические свойства

Существует более 200 термохимических циклов, которые можно использовать для разделения воды, около дюжины этих циклов, такие, как цикл оксида железа, цикл оксида оксида церия (IV) оксида церия (III), цинк-оксидный цинк, цикл серного йода, цикл меди и хлора и гибридный цикл серы, находятся на стадии исследования и на стадии испытаний для получения водорода и кислорода из воды и тепла без использования электричества. Ряд лабораторий (в том числе, во Франции, Германии, Греции, Японии и США) разрабатывают термохимические методы получения водорода из солнечной энергии и воды 27).

Анаэробная коррозия

В анаэробных условиях, железо и стальные сплавы медленно окисляются протонами воды, одновременно восстанавливаясь в молекулярном водороде (H2). Анаэробная коррозия железа приводит сначала к образованию гидроксида железа (зеленая ржавчина) и может быть описана следующей реакцией: Fe + 2 H2O → Fe (OH) 2 + H2. В свою очередь, в анаэробных условиях гидроксид железа (Fe (OH) 2) может быть окислен протонами воды с образованием магнетита и молекулярного водорода. Этот процесс описывается реакцией Шикорра: 3 Fe (OH) 2 → Fe3O4 + 2 H2O + H2 гидроокись железа → магний + вода + водород. Хорошо кристаллизованный магнетит (Fe3O4) термодинамически более устойчив, чем гидроксид железа (Fe (OH) 2). Этот процесс происходит во время анаэробной коррозии железа и стали в бескислородных грунтовых водах и при восстановлении почв ниже уровня грунтовых вод.

Геологическое происхождение: реакция серпентинизации

В отсутствие кислорода (O2) в глубоких геологических условиях, преобладающих далеко от атмосферы Земли, водород (H2) образуется в процессе серпентинизации путем анаэробного окисления протонами воды (H+) силиката железа (Fe2 +), присутствующего в кристаллической решетке фаялита (Fe2SiO4, минал оливин-железа). Соответствующая реакция, приводящая к образованию магнетита (Fe3O4), кварца (SiO2) и водорода (H2): 3Fe2SiO4 + 2 H2O → 2 Fe3O4 + 3 SiO2 + 3 H2 фаялит + вода → магнетит + кварц + водород. Эта реакция очень напоминает реакцию Шикорра, наблюдаемую при анаэробном окислении гидроксида железа в контакте с водой.

Формирование в трансформаторах

Из всех опасных газов, образующихся в силовых трансформаторах, водород является наиболее распространенным и генерируется в большинстве случаев неисправностей; таким образом, образование водорода является ранним признаком серьезных проблем в жизненном цикле трансформатора. 28)

Применения

Потребление в различных процессах

Большие количества H2 необходимы в нефтяной и химической промышленности. В наибольшей мере, H2 применяется для переработки («модернизации») ископаемого топлива и для производства аммиака. На нефтехимических заводах, H2 используется при гидродеалкилировании, гидродесульфировании и гидрокрекинге. H2 имеет несколько других важных применений. H2 используется в качестве гидрирующего агента, в частности, для повышения уровня насыщения ненасыщенных жиров и масел (обнаруженных в таких предметах, как маргарин), и в производстве метанола. Это также источник водорода при производстве соляной кислоты. Н2 также используется в качестве восстановителя металлических руд. Водород является высокорастворимым веществом во многих редкоземельных и переходных металлах и растворим как в нанокристаллических, так и в аморфных металлах. Растворимость водорода в металлах зависит от локальных искажений или примесей в кристаллической решетке 29). Это может быть полезно, когда водород очищается путем прохождения через горячие палладиевые диски, но высокая растворимость газа является металлургической проблемой, способствующей охрупчиванию многих металлов, осложняя проектирование трубопроводов и резервуаров для хранения. Помимо использования в качестве реагента, H2 имеет широкое применение в физике и технике. Он используется в качестве защитного газа в методах сварки, таких как атомно-водородная сварка. 30) H2 используется в качестве охлаждающей жидкости ротора в электрических генераторах на электростанциях, поскольку он имеет самую высокую теплопроводность среди всех газов. Жидкий H2 используется в криогенных исследованиях, включая исследования сверхпроводимости 31). Поскольку Н2 легче воздуха, имея чуть больше 1/14 от плотности воздуха, он когда-то широко использовался в качестве поднимающего газа в воздушных шарах и дирижаблях. В более новых применениях, водород используется в чистом виде или смешивается с азотом (иногда называемым формовочным газом) в качестве газа-индикатора для мгновенного обнаружения утечки. Водород применяется в автомобильной, химической, энергетической, аэрокосмической и телекоммуникационной отраслях. Водород – это разрешенная пищевая добавка (E 949), которая позволяет проводить испытания на герметичность пищевых продуктов, помимо других антиокислительных свойств. Редкие изотопы водорода также имеют конкретные применения. Дейтерий (водород-2) используется в приложениях ядерного деления в качестве замедлителя медленных нейтронов и в реакциях ядерного синтеза. Соединения дейтерия применяются в области химии и биологии при исследованиях изотопных эффектов реакции. Тритий (водород-3), производимый в ядерных реакторах, используется в производстве водородных бомб, в качестве изотопной метки в биологических науках, и в качестве источника излучения в светящихся красках. Температура тройной точки равновесного водорода является определяющей неподвижной точкой в температурной шкале ITS-90 при 13,8033 кельвинах. 32)

Охлаждающая среда

 Водород: охлаждающая среда Водород обычно используется на электростанциях в качестве хладагента в генераторах из-за ряда благоприятных свойств, которые являются прямым результатом его легких двухатомных молекул. К ним относятся низкая плотность, низкая вязкость и максимальная удельная теплоемкость и теплопроводность среди всех газов.

Энергетический носитель

Водород не является энергетическим ресурсом 33), за исключением гипотетического контекста коммерческих термоядерных электростанций, использующих дейтерий или тритий, причем эта технология в настоящее время далека от развития. Энергия Солнца происходит от ядерного синтеза водорода, но этот процесс труднодостижим на Земле. Элементарный водород из солнечных, биологических или электрических источников требует больше энергии для его производства, чем расходуется при его сжигании, поэтому в этих случаях водород функционирует как носитель энергии, по аналогии с батареей. Водород может быть получен из ископаемых источников (таких как метан), но эти источники являются исчерпаемыми 34). Плотность энергии на единицу объема как жидкого водорода, так и сжатого газообразного водорода при любом практически достижимом давлении значительно меньше, чем у традиционных источников энергии, хотя плотность энергии на единицу массы топлива выше. Тем не менее, элементный водород широко обсуждался в контексте энергетики как возможный будущий носитель энергии в масштабах всей экономики. Например, секвестрация СО2 с последующим улавливанием и хранением углерода может быть проведена в точке производства H2 из ископаемых видов топлива. Водород, используемый при транспортировке, будет гореть относительно чисто, с некоторыми выбросами NOx, но без выбросов углерода. Однако, стоимость инфраструктуры, связанная с полной конверсией в водородную экономику, будет существенной. Топливные элементы могут превращать водород и кислород непосредственно в электричество более эффективно, чем двигатели внутреннего сгорания. 35)

Полупроводниковая промышленность

Водород используется для насыщения оборванных связей аморфного кремния и аморфного углерода, что помогает стабилизировать свойства материала. Он также является потенциальным донором электронов в различных оксидных материалах, включая ZnO, SnO2, CdO, MgO, ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4 и SrZrO3. 36)

Биологические реакции

H2 является продуктом некоторых видов анаэробного метаболизма и производится несколькими микроорганизмами, обычно посредством реакций, катализируемых железо- или никельсодержащими ферментами, называемыми гидрогеназами. Эти ферменты катализируют обратимую окислительно-восстановительную реакцию между Н2 и его компонентами – двумя протонами и двумя электронами. Создание газообразного водорода происходит при передаче восстановительных эквивалентов, образующихся при ферментации пирувата в воду 37). Естественный цикл производства и потребления водорода организмами называется водородным циклом. Расщепление воды, процесс, при которой вода разлагается на составляющие ее протоны, электроны и кислород, происходит в световых реакциях у всех фотосинтезирующих организмов. Некоторые такие организмы, в том числе водоросли Chlamydomonas Reinhardtii и cyanobacteria, развили вторую стадию в темных реакциях, в которых протоны и электроны восстанавливаются с образованием H2-газа специализированными гидрогеназами в хлоропласте. Были предприняты попытки генетически модифицировать цианобактериальные гидразы для эффективного синтеза газообразного H2 даже в присутствии кислорода. Также были предприняты усилия с использованием генетически модифицированной водоросли в биореакторе.

Безопасность и меры предосторожности

Водород связан с рядом опасностей для человека, начиная от потенциальных взрывов и пожаров при смешивании с воздухом, и заканчивая удушающим токсическим веществом в его чистой, свободной от кислорода форме. Кроме того, жидкий водород представляет собой криоген и связан с опасностями (например, обморожения), которые связаны с очень холодными жидкостями. Водород растворяется во многих металлах и, помимо утечки, может оказывать на них неблагоприятное воздействие, например, водородное охрупчивание, приводящее к трещинам и взрывам. Водородный газ, протекающий во внешний воздух, может самовоспламеняться. Более того, водородный огонь, будучи чрезвычайно жарким, почти невидим и, таким образом, может привести к случайным ожогам. 38) Даже интерпретация данных о водороде (включая данные о безопасности) смешивается с рядом явлений. Многие физические и химические свойства водорода зависят от соотношения параводород / ортоводород (для достижения равновесного соотношения часто требуется несколько дней или недель при данной температуре), для которых обычно даются данные. Параметры детонации водорода, такие как критическое давление и температура детонации, сильно зависят от геометрии контейнера.

:Tags

Список использованной литературы:


1) Palmer, D. (13 September 1997). «Hydrogen in the Universe». NASA. Retrieved 5 February 2008.
2) Presenter: Professor Jim Al-Khalili (21 January 2010). «Discovering the Elements». Chemistry: A Volatile History. 25:40 minutes in. BBC. BBC Four.
3) Christensen, C. H.; Nørskov, J. K.; Johannessen, T. (9 July 2005). «Making society independent of fossil fuels – Danish researchers reveal new technology». Technical University of Denmark. Retrieved 19 May 2015.
4) Carcassi, M. N.; Fineschi, F. (2005). «Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment». Energy. 30 (8): 1439–1451. doi:10.1016/j.energy.2004.02.012
5) Patnaik, P. (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances. Wiley-Interscience. p. 402. ISBN 0-471-71458-5.
6) «photon wavelength 13.6 eV». Wolfram Alpha. 20 May 2015. Retrieved 20 May 2015.
7) Tikhonov, V. I.; Volkov, A. A. (2002). «Separation of Water into Its Ortho and Para Isomers». Science. 296 (5577): 2363. PMID 12089435. doi:10.1126/science.1069513
8) Shinitzky, M.; Elitzur, A. C. (2006). «Ortho-para spin isomers of the protons in the methylene group». Chirality. 18 (9): 754–756. PMID 16856167. doi:10.1002/chir.20319
9) «Biochemistry». Dictionary.com. Lexico Publishing Group. 2008. Retrieved 23 March 2008.
10) Moers, K. (1920). «Investigations on the Salt Character of Lithium Hydride». Zeitschrift für Anorganische und Allgemeine Chemie. 113 (191): 179–228. doi:10.1002/zaac.19201130116
11) Hibbs, D. E.; Jones, C.; Smithies, N. A. (1999). «A remarkably stable indium trihydride complex: synthesis and characterisation of [InH3P(C6H11)3]». Chemical Communications (2): 185–186. doi:10.1039/a809279f
12) Korsheninnikov, A.; Nikolskii, E.; Kuzmin, E.; Ozawa, A.; Morimoto, K.; Tokanai, F.; Kanungo, R.; Tanihata, I.; et al. (2003). «Experimental Evidence for the Existence of 7H and for a Specific Structure of 8He». Physical Review Letters. 90 (8): 082501. Bibcode:2003PhRvL..90h2501K. doi:10.1103/PhysRevLett.90.082501
13) Staff (15 November 2007). «Tritium». U.S. Environmental Protection Agency. Retrieved 12 February 2008.
14) van der Krogt, P. (5 May 2005). «Hydrogen». Elementymology & Elements Multidict. Retrieved 20 December 2010.
15) Boyle, R. (1672). «Tracts written by the Honourable Robert Boyle containing new experiments, touching the relation betwixt flame and air…» London.
16) «Mars Global Surveyor». Astronautix.com. Retrieved 6 April 2009.
17) Hendrix, Susan (25 November 2008). Lori Tyahla, ed. «Extending Hubble's mission life with new batteries». NASA. Retrieved 19 May 2015.
18) Crepeau, R. (1 January 2006). Niels Bohr: The Atomic Model. Great Scientific Minds. Great Neck Publishing. ISBN 1-4298-0723-7.
19) Kellerbauer, Alban (29 January 2015). «Why Antimatter Matters». European Review. 23 (01): 45–56. doi:10.1017/S1062798714000532
20) Haubold, H.; Mathai, A. M. (15 November 2007). «Solar Thermonuclear Energy Generation». Columbia University. Archived from the original on 2011-12-11. Retrieved 12 February 2008.
21) Dresselhaus, M.; et al. (15 May 2003). «Basic Research Needs for the Hydrogen Economy» (PDF). Argonne National Laboratory, U.S. Department of Energy, Office of Science Laboratory. Retrieved 5 February 2008.
22) Helm, H.; et al. «Coupling of Bound States to Continuum States in Neutral Triatomic Hydrogen» (PDF). Department of Molecular and Optical Physics, University of Freiburg, Germany. Retrieved 25 November 2009.
23) Ogden, J. M. (1999). «Prospects for building a hydrogen energy infrastructure». Annual Review of Energy and the Environment. 24: 227–279. doi:10.1146/annurev.energy.24.1.227
24) «Hydrogen Properties, Uses, Applications». Universal Industrial Gases, Inc. 2007. Retrieved 11 March 2008.
25) Lees, A. (2007). «Chemicals from salt». BBC. Archived from the original on 26 October 2007. Retrieved 11 March 2008.
26) Kruse, B.; Grinna, S.; Buch, C. (2002). «Hydrogen Status og Muligheter» (PDF). Bellona. Retrieved 12 February 2008.
27) Perret, R. «Development of Solar-Powered Thermochemical Production of Hydrogen from Water, DOE Hydrogen Program, 2007» (PDF). Retrieved 17 May 2008.
28) Hirschler, M. M. (2000). Electrical Insulating Materials: International Issues. ASTM International. pp. 89–. ISBN 978-0-8031-2613-8. Retrieved 13 July 2012.
29) Kirchheim, R. (1988). «Hydrogen solubility and diffusivity in defective and amorphous metals». Progress in Materials Science. 32 (4): 262–325. doi:10.1016/0079-6425(88)90010-2
30) «Atomic Hydrogen Welding». Specialty Welds. 2007. Archived from the original on 16 July 2011.
31) Hardy, W. N. (2003). «From H2 to cryogenic H masers to HiTc superconductors: An unlikely but rewarding path». Physica C: Superconductivity. 388–389: 1–6. Bibcode:2003PhyC..388….1H. doi:10.1016/S0921-4534(02)02591-1
32) International Temperature Scale of 1990 (PDF). Procès-Verbaux du Comité International des Poids et Mesures. 1989. pp. T23–T42. Retrieved 25 March 2008.
33) McCarthy, J. (31 December 1995). «Hydrogen». Stanford University. Retrieved 14 March 2008.
34) «Nuclear Fusion Power». World Nuclear Association. May 2007. Retrieved 16 March 2008.
35) Garbak, John (2011). «VIII.0 Technology Validation Sub-Program Overview» (PDF). DOE Fuel Cell Technologies Program, FY 2010 Annual Progress Report. Retrieved 20 May 2015.
36) Peacock, P. W.; Robertson, J. (2003). «Behavior of hydrogen in high dielectric constant oxide gate insulators». Applied Physics Letters. 83 (10): 2025–2027. Bibcode:2003ApPhL..83.2025P. doi:10.1063/1.1609245
37) Cammack, R.; Robson, R. L. (2001). Hydrogen as a Fuel: Learning from Nature. Taylor & Francis Ltd. pp. 202–203. ISBN 0-415-24242-8.
38) Walker, James L.; Waltrip, John S.; Zanker, Adam (1988). John J. McKetta; William Aaron Cunningham, eds. Lactic acid to magnesium supply-demand relationships. Encyclopedia of Chemical Processing and Design. 28. New York: Dekker. p. 186. ISBN 082472478X. Retrieved 20 May 2015.

    Понравилась статья? Поделитесь ей в соцсетях:

  • Отправить "Водород" в LiveJournal
  • Отправить "Водород" в Facebook
  • Отправить "Водород" в VKontakte
  • Отправить "Водород" в Twitter
  • Отправить "Водород" в Odnoklassniki
  • Отправить "Водород" в MoiMir
водород.txt · Последнее изменение: 2021/04/30 13:00 — dr.cookie

Инструменты страницы

x

Будь первым!

Хочешь быть в курсе новых препаратов и научных исследований?

↓ Подпишись ↓

Telegram-канал