Инструменты пользователя

Инструменты сайта


нейрон

Нейрон

Структура нейрона Нейрон, или нервная клетка – это электрически возбуждаемая клетка, которая обрабатывает и передает информацию с помощью электрических и химических сигналов. Эти сигналы между нейронами осуществляются через специальные соединения, называемые синапсами. Нейроны могут соединяться друг с другом, образуя нейронные сети. Нейроны являются основными компонентами головного и спинного мозга центральной нервной системы (ЦНС) и вегетативных ганглиев периферической нервной системы. Существует несколько типов специализированных нейронов. Сенсорные нейроны реагируют на раздражители, такие как прикосновение, звук или свет и все другие раздражители, воздействующие на клетки сенсорных органов, которые затем посылают сигналы в спинной и головной мозг. Моторные нейроны получают сигналы от головного и спинного мозга, вызывая мышечные сокращения и влияя на гландулярные выходы. Интернейроны соединяют нейроны с другими нейронами в той же области мозга или спинной мозг в нейронных сетях.

Типичный нейрон состоит из тела клетки (сомы), дендритов и аксона. Термин «нейрит» используется для описания дендрита или аксона, особенно на его недифференцированной стадии. Дендриты представляют собой тонкие структуры, которые возникают из тела клетки, часто распространяются на сотни микрометров и разветвляются несколько раз, что приводит к возникновению сложного «дендритного дерева». Аксон (также называемый нервным волокном при миелинизации) является специальным клеточным расширением (процессом), который возникает из тела клетки в месте, называемом холмом аксона, и перемещается на расстояние до 1 метра у людей или даже больше у других видов животных. Нервные волокна часто соединяются в пучки, а в периферической нервной системе пучки этих пучков образуют нервы (как пряди из проволочных кабелей). Тело клетки нейрона часто вызывает рост множественных дендритов, но не более чем на один аксон, хотя аксон может разветвляться сотни раз. В большинстве синапсов, сигналы посылаются от аксона одного нейрона к дендриту другого. Однако, из этих правил существует множество исключений: например, нейроны могут не иметь дендритов или не иметь аксона, а синапсы могут связывать аксон с другим аксоном или дендрит с другим дендритом. Все нейроны являются электрически возбуждаемыми, поддерживая градиенты напряжения на своих мембранах с помощью ионных насосов с метаболическим действием, которые объединяются с ионными каналами, встроенными в мембрану, для генерирования внутриклеточных или внеклеточных концентраций ионов, таких как натрий, калий, хлорид и кальций. Изменения в поперечном мембранном напряжении могут изменять функцию зависимых от напряжения ионных каналов. Если напряжение изменяется достаточно сильно, генерируется электрохимический импульс «все или ничего», называемый потенциалом действия, который быстро перемещается вдоль аксона клетки и активирует синаптические связи с другими клетками. В большинстве случаев, нейроны генерируются специальными типами стволовых клеток. Нейроны во взрослом мозге обычно не подвергаются клеточному делению. Астроциты представляют собой звездообразные глиальные клетки, которые также, как было обнаружено, превращаются в нейроны в силу характерной плюрипотентности стволовых клеток. В зрелом возрасте, в большинстве областей мозга нейрогенез в большинстве случаев прекращается. Тем не менее, есть убедительные доказательства генерации значительного числа новых нейронов в двух областях мозга, гиппокампе и обонятельной луковице. 1)

Обзор

Нейрон – это специализированный тип клеток, обнаруженный в телах всех живых организмов. Только губки и несколько других более простых организмов не имеют нейронов. Особенностями, которые определяют нейрон, являются электрическая возбудимость и наличие синапсов, которые являются сложными мембранными переходами, которые передают сигналы другим клеткам. Нейроны тела, а также глиальные клетки, которые придают им структурную и метаболическую поддержку, вместе составляют нервную систему. У позвоночных, большинство нейронов относятся к центральной нервной системе, но некоторые из них находятся в периферических ганглиях, и многие сенсорные нейроны расположены в сенсорных органах, таких как сетчатка и улитка. Типичный нейрон делится на три части: тело сомы или клетки, дендриты и аксон. Сома обычно компактна; аксон и дендриты – это нити, которые выходят из сомы. Дендриты обычно обильно ветвятся, становятся тоньше с каждым ветвлением и расширяют свои самые отдаленные ветви на несколько сотен микрометров от сомы. Аксон покидает сому в месте набухания, называемом холмом аксона, и может простираться на большие расстояния, что приводит к появлению сотен ветвей. В отличие от дендритов, аксон обычно имеет одинаковый диаметр по всей длине. Сома может «вырастить» многочисленные дендриты, но не более чем один аксон. Синаптические сигналы от других нейронов принимаются сомой и дендритами; сигналы к другим нейронам передаются аксоном. Таким образом, типичный синапс представляет собой контакт между аксоном одного нейрона и дендритом или сомой другого. Синаптические сигналы могут быть возбуждающими или тормозящими. Если чистое возбуждение, полученное нейроном за короткий промежуток времени, достаточно велико, нейрон генерирует короткий импульс, называемый потенциалом действия, который возникает у сомы и быстро распространяется вдоль аксона, активируя синапсы на другие нейроны по мере его поступления. Многие нейроны вписываются в вышеизложенную схему во всех отношениях, но есть и исключения для большинства ее частей. Нет нейронов, у которых нет сомы, но есть нейроны, у которых нет дендритов, и нейроны, у которых отсутствует аксон. Кроме того, в дополнение к типичным аксодендритным и аксосомным синапсам, существуют аксоаксические (аксон-аксонные) и дендродрендритные (дендрит-дендритные) синапсы. Ключом к нейронной функции является синаптическая сигнализация, которая частично является электрической, и частично – химической. Электрический аспект зависит от свойств мембраны нейрона. Как и все клетки животных, клеточное тело каждого нейрона окружено плазматической мембраной, двухслойной липидной молекулой со многими типами белковых структур, встроенных в нее. Липидный бислой является мощным электрическим изолятором, но в нейронах многие белковые структуры, встроенные в мембрану, являются электрически активными. К ним относятся ионные каналы, которые позволяют электрически заряженным ионам течь через мембрану, и ионные насосы, которые активно переносят ионы с одной стороны мембраны на другую. Большинство ионных каналов проницаемы только для конкретных типов ионов. Некоторые ионные каналы потенциалзависимы, что означает, что они могут переключаться между открытыми и закрытыми состояниями, изменяя разность потенциалов на мембране. Другие химически зависимы, что означает, что они могут переключаться между открытым и закрытым состояниями путем взаимодействия с химическими веществами, которые диффундируют через внеклеточную жидкость. Взаимодействия между ионными каналами и ионными насосами создают разность потенциалов на мембране, обычно немного меньше 1/10 вольт на базовой линии. Это напряжение имеет две функции: во-первых, оно обеспечивает источник питания для ассортимента зависимого от напряжения белкового оборудования, встроенного в мембрану; во-вторых, оно обеспечивает основу для передачи электрического сигнала между различными частями мембраны. Нейроны «общаются» при помощи химических и электрических синапсов в процессе, известном как нейротрансмиссия, также называемом синаптической трансмиссией. Основным процессом, который запускает высвобождение нейротрансмиттеров, является потенциал действия, распространяющийся электрический сигнал, который генерируется при использовании электрически возбудимой мембраны нейрона. Это также известно как волна деполяризации.

Анатомия и гистология

Нейроны являются высокоспециализированными относительно обработки и передачи клеточных сигналов. Учитывая разнообразие их функций, выполняемых в разных частях нервной системы, существует, как ожидается, широкое разнообразие нейронов по форме, размеру и электрохимическим свойствам. Например, сома нейрона может варьироваться от 4 до 100 микрометров в диаметре. 2) Сома – тело нейрона. Поскольку она содержит ядро, здесь происходит большая часть синтеза белка. Ядро может иметь диаметр от 3 до 18 микрометров. Дендриты нейрона являются клеточными расширениями со многими ветвями. Эту общую форму и структуру метафорически называют дендритным деревом. Большая часть входа в нейрон происходит через дендритный позвоночник. Аксон – более тонкая, подобная кабелю проекция, которая может растягиваться на десятки, сотни или даже десятки тысяч раз диаметра сомы в длину. Аксон переносит нервные сигналы от сомы (а также возвращает некоторые типы информации). У многих нейронов есть только один аксон, но этот аксон может и, как правило, подвергнется, обширному ветвлению, позволяющему «общаться» со многими клетками-мишенями. Часть аксона, где он появляется из сомы, называется аксональным холмом. Помимо того, что аксональный холм является анатомической структурой, он также является частью нейрона, который имеет наибольшую плотность зависимых от напряжения натриевых каналов. Это делает его наиболее легковозбуждаемой частью нейрона и зоной инициации всплеска для аксона: в электрофизиологических терминах, он имеет наибольший порог потенциального отрицательного воздействия. В то время как аксон и аксональный холм обычно участвуют в оттоке информации, этот регион также может получать данные от других нейронов. Терминаль аксона содержит синапсы, специализированные структуры, в которых химические вещества нейротрансмиттеров высвобождаются для связи с целевыми нейронами. Каноническое представление нейрона связывает специальные функции с его различными анатомическими компонентами; однако, дендриты и аксоны часто действуют так, что это противоречит их так называемой основной функции. Аксоны и дендриты в центральной нервной системе обычно имеют толщину около одного микрометра, а некоторые в периферической нервной системе намного толще. Сома обычно составляет около 10-25 микрометров в диаметре и часто не намного больше, чем содержащееся в ней ядро клетки. Самый длинный аксон человеческого моторного нейрона может быть более метра длиной, от основания позвоночника до пальцев ног. Сенсорные нейроны могут иметь аксоны, которые начинаются от пальцев ног и продолжаются до задней колонки спинного мозга, более 1,5 метров у взрослых. Жирафы имеют одиночные аксоны длиной несколько метров по всей длине шеи. Большая часть того, что известно об аксональной функции, происходит от изучения гигантского аксона кальмара, идеального экспериментального препарата из-за его относительно огромного размера (толщиной 0,5-1 миллиметра, длиной несколько сантиметров). Полностью дифференцированные нейроны постоянно постмитотичны, однако исследования, начиная с 2002 года, показывают, что дополнительные нейроны во всем мозге могут развиваться из нервных стволовых клеток в процессе нейрогенеза. Они встречаются во всем мозге, но особенно сконцентрированы в субвентрикулярной зоне и субгранулярной зоне 3).

Гистология и внутренняя структура

Многочисленные микроскопические скопления, называемые веществом Ниссля (или тела Ниссля), видны, когда тела нервных клеток окрашиваются базофильным («любящим основание») красителем. Эти структуры состоят из грубого эндоплазматического ретикулума и связанной с ним рибосомальной РНК. Эти структуры были названы в честь немецкого психиатра и невропатолога Франца Ниссли (1860-1919). Они участвуют в синтезе белка, и их известность можно объяснить тем, что нервные клетки очень метаболически активны. Базофильные красители, такие как анилин или (слабо) гематоксилин выделяют отрицательно заряженные компоненты и поэтому связываются с фосфатным скелетом рибосомной РНК. Тело клетки нейрона поддерживается сложной сеткой структурных белков, называемых нейрофиламентами, которые собираются в более крупные нейрофибриллы. Некоторые нейроны также содержат пигментные гранулы, такие как нейромеланин (коричневато-черный пигмент, который является побочным продуктом синтеза катехоламинов) и липофусцин (желтовато-коричневый пигмент), оба из которых накапливаются с возрастом. 4) Другими структурными белками, которые важны для нейрональной функции, являются актин и тубулин из микротрубочек. Актин преимущественно наблюдается на кончиках аксонов и дендриты – в ходе нейронального развития. Существуют разные внутренние структурные характеристики между аксонами и дендритами. Типичные аксоны почти никогда не содержат рибосом, кроме некоторых в начальном сегменте. Дендриты содержат гранулированный эндоплазматический ретикулум или рибосомы в уменьшающихся количествах, когда расстояние от тела клетки увеличивается.

Классификация

Нейроны существуют в разных формах и размерах и могут быть классифицированы по их морфологии и функции. 5) Анатомист Камилло Гольджи сгруппировал нейроны на два типа; тип I с длинными аксонами, используемыми для перемещения сигналов на большие расстояния и тип II с короткими аксонами, которые часто можно путать с дендритами. Клетки типа I могут быть дополнительно разделены по тому, где находится тело клетки или сома. Основная морфология нейронов I типа, представленная спинальными двигательными нейронами, состоит из клеточного тела, называемого сомой, и длинного тонкого аксона, покрытого миелиновой оболочкой. Вокруг тела клетки находится ветвящееся дендритное дерево, которое получает сигналы от других нейронов. Конец аксона имеет ветвящиеся терминалы (терминали аксона), которые высвобождают нейротрансмиттеры в щель, называемую синаптической щелью между терминалями и дендритами следующего нейрона.

Структурная классификация

Полярность

Большинство нейронов могут быть анатомически охарактеризованы как:

  • Униполярные или псевдоуниполярные: дендрит и аксон производятся в ходе одного и того же процесса.
  • Биполярные: аксон и одиночный дендрит на противоположных концах сомы.
  • Многополярный: два или более дендрита, отдельно от аксона:
  • Гольджи I: нейроны с длительно выступающими аксональными процессами; примерами являются пирамидальные клетки, клетки Пуркинье и клетки переднего рога.
  • Гольджи II: нейроны, аксоновский процесс которых реализуется локально; лучшим примером является гранулярная клетка.
  • Анаксонический: аксон нельзя отличить от дендритов.

Другие

Кроме того, некоторые уникальные типы нейронов могут быть идентифицированы в соответствии с их расположением в нервной системе и различной формой. Вот некоторые примеры:

  • Миоэпителиальная клетка, интернейроны, образующие плотное сплетение терминалей вокруг сомы клеток-мишеней, обнаружены в коре и мозжечке.
  • Клетка Бетца, крупные моторные нейроны.
  • Клетка Лугаро, интернейроны мозжечка.
  • Средние колючие нейроны, большинство нейронов в полосатом теле.
  • Клетки Пуркинье, огромные нейроны в мозжечке, тип многополярного нейрона Гольджи I.
  • Пирамидальные клетки, нейроны с треугольной сомой, тип Гольджи I.
  • Клетки Реншоу, нейроны с обоими концами, связанные с альфа-двигательными нейронами.
  • Однополярные кисти, интернейроны с уникальным дендритом, заканчивающиеся кистообразным пучком.
  • Гранулярная клетка, тип нейронов Гольджи II.
  • Передние роговые клетки, мотонейроны, расположенные в спинном мозге.
  • Шпиндельные клетки, интернейроны, которые соединяют широко разделенные области мозга.

Функциональная классификация

Направление

  • Афферентные нейроны передают информацию из тканей и органов в центральную нервную систему и также называются сенсорными нейронами.
  • Эфферентные нейроны передают сигналы от центральной нервной системы к эффекторным клеткам и также называются двигательными нейронами.
  • Интернейроны соединяют нейроны в определенных областях центральной нервной системы.

Афферентные и эфферентные нейроны также относятся, в основном, к нейронам, которые, соответственно, приносят информацию или отправляют информацию из мозга.

Действие на другие нейроны

Нейрон воздействует на другие нейроны, высвобождая нейротрансмиттер, который связывается с химическими рецепторами. Влияние на постсинаптический нейрон определяется не пресинаптическим нейроном или нейротрансмиттером, а типом активируемого рецептора. Нейротрансмиттер можно рассматривать как ключ, а рецептор – как замок: один и тот же ключ можно использовать для открытия многих разных типов замков. Рецепторы могут быть классифицированы как возбуждающие (приводящие к увеличению скорости выстреливания), ингибирующие (приводящие к снижению скорости выстреливания) или модулирующие (вызывающие долговременные эффекты, не имеющие прямого отношения к скорости выстреливания). Два наиболее распространенных нейротрансмиттера в мозге, глутамат и ГАМК, имеют действия, которые в значительной степени непротиворечивы. Глутамат действует на несколько разных типов рецепторов и обладает эффектами, которые возбуждаются при ионотропных рецепторах и обладают модулирующим эффектом при метаботропных рецепторах. Аналогично, ГАМК действует на несколько разных типов рецепторов, но все они имеют эффекты (по крайней мере, у взрослых животных), которые являются ингибиторными. Из-за этой согласованности, нейробиологи часто используют упрощенную терминологию, говоря о клетках, которые высвобождают глутамат, как о «возбуждающих нейронах», и клетках, которые высвобождают ГАМК, как об «ингибирующих нейронах». Поскольку более 90% нейронов в головном мозге высвобождают либо глутамат, либо ГАМК, эти обозначения охватывают подавляющее большинство нейронов. Существуют также другие типы нейронов, которые оказывают последовательное воздействие на свои мишени, например, «возбуждающие» двигательные нейроны в спинном мозге, которые высвобождают ацетилхолин, и «тормозные» спинальные нейроны, которые высвобождают глицин. Однако, различие между возбуждающим и тормозящим нейротрансмиттерами не является абсолютным. Скорее, это зависит от класса химических рецепторов, присутствующих на постсинаптических нейронах. В принципе, один нейрон, высвобождающий один нейротрансмиттер, может оказывать возбуждающее воздействие на некоторые мишени, тормозящие эффекты на другие, а также модулирующие эффекты на третьи. Например, фоторецепторные клетки в сетчатке постоянно высвобождают нейротрансмиттер глутамат в отсутствие света. Так называемые OFF биполярные клетки, как и большинство нейронов, возбуждаются высвобожденным глутаматом. Однако, соседние целевые нейроны, называемые ON биполярными клетками, вместо этого ингибируются глутаматом, поскольку они не имеют типичных ионотропных глутаматных рецепторов и вместо этого экспрессируют класс ингибирующих метаботропных глутаматных рецепторов. В присутствии света, фоторецепторы прекращают высвобождать глутамат, который освобождает ON биполярные клетки от торможения, активируя их; это одновременно устраняет возбуждение из биполярных клеток OFF, заставляя их «замолчать». Можно определить тип ингибирующего эффекта, который пресинаптический нейрон будет оказывать на постсинаптический нейрон, на основе белков, которые экспрессирует пресинаптический нейрон. Экспрессирующие паравальбумин нейроны обычно гасят выходной сигнал постсинаптического нейрона в зрительной коре, тогда как нейроны, экспрессирующие соматостатин, обычно блокируют дендритные входы в постсинаптический нейрон 6).

Модели разряда

Нейроны обладают внутренними электросопротивляющими свойствами, такими как колебания осцилляций трансмембранного напряжения. Поэтому нейроны можно классифицировать по их электрофизиологическим характеристикам:

  • Тоническая или регулярная пульсация. Некоторые нейроны обычно постоянно (или тонически) активны. Пример: интернейроны в нейростриатуме.
  • Фазировка или разрыв. Нейроны, которые выстреливают в виде всплесков, называются фазическими.
  • Быстро-разряжающиеся нейроны. Некоторые нейроны отличаются высокими скоростями выстреливания, например, некоторые типы тормозных интернейронов коры, клетки в бледном шаре, сетчатые ганглиозные клетки. 7)

Классификация по производству нейротрансмиттеров

  • Холинергические нейроны – ацетилхолин. Ацетилхолин высвобождается из пресинаптических нейронов в синаптическую щель. Он действует как лиганд как для лиганд-ионных каналов, так и для метаботропных (GPCR) мускариновых рецепторов. Никотиновые рецепторы представляют собой пентамерные лиганд-ионные каналы, состоящие из альфа- и бета-субъединиц, которые связывают никотин. Связывание лиганда открывает канал, вызывающий приток деполяризации Na+ и увеличивает вероятность высвобождения пресинаптического нейротрансмиттера. Ацетилхолин синтезируют из холина и ацетил-кофермента А.
  • ГАМКергические нейроны – гамма-аминомасляная кислота. ГАМК является одним из двух нейроингибиторов в ЦНС, другим является глицин. ГАМК имеет гомологичную функцию для ацетилхолина, генерируя анионные каналы, которые позволяют хлор-ионам входить в постсинаптический нейрон. Хлор вызывает гиперполяризацию в нейроне, уменьшая вероятность срабатывания потенциала действия, когда напряжение становится более отрицательным (напомним, что для выстреливания потенциала действия необходимо достичь положительного порога напряжения). ГАМК синтезируется из глутамат-нейротрансмиттеров ферментами глутаматной декарбоксилазы.
  • Глутаматергические нейроны – глутамат. Глутамат является одним из двух первичных возбуждающих аминокислотных нейротрансмиттеров, а другим является аспартат. Глутаматные рецепторы являются одной из четырех категорий, три из которых являются лиганд-связанными ионными каналами, и один из которых представляет собой рецептор, связанный с G-белком (часто называемый GPCR). Рецепторы альфа-амино-3-гидрокси-5-метил-4-изоксазол-пропионовой кислоты (AMPA) и рецепторы каината функционируют как катионные каналы, проницаемые для каналов Na+ -катиона, опосредующие быструю возбуждающую синаптическую трансмиссию.
  • NMDA-рецепторы являются другим катионным каналом, более проницаемым для Са2 +. Функция NMDA-рецепторов зависит от связывания рецептора глицина как соагониста в порах канала. NMDA-рецепторы не функционируют без присутствия обоих лигандов.
  • Метаботропные рецепторы, GPCR, модулируют синаптическую передачу и постсинаптическую возбудимость.
  • Глютамат может вызвать экситотоксичность, когда поток крови в мозг прерывается, что приводит к повреждению головного мозга. Когда подавляется кровоток, глутамат высвобождается из пресинаптических нейронов, вызывая активацию рецепторов NMDA и AMPA больше, чем обычно, вне условий стресса, приводя к повышению уровней Ca2 + и Na +, входящих в постсинаптический нейрон и вызывающих повреждение клеток. Глутамат синтезируется из аминокислотного глутамина ферментом глутамат-синтазой.
  • Допаминергические нейроны – допамин. Допамин представляет собой нейротрансмиттер, который действует на рецепторы типа D1 (D1 и D5), которые увеличивают рецепторы уровень cAMP и PKA и D2 (D2, D3 и D4), которые активируют Gi-связанные рецепторы, которые уменьшают cAMP и PKA. Допамин связан с настроением и поведением и модулирует как до, так и постсинаптическую нейротрансмиссию. Потеря дофаминовых нейронов в чёрном веществе связана с болезнью Паркинсона. Допамин синтезируется из аминокислоты тирозина. Тирозин катализируется в левадопу (или L-DOPA) тирозингидролазой, а левадопа затем превращается в допамин с помощью аминокислоты декарбоксилазы.
  • Серотонинергические нейроны – серотонин. Серотонин (5-гидрокситриптамин, 5-НТ) может действовать как возбуждающее или ингибирующее вещество. Из четырех рецепторных классов 5-HT, 3 являются GPCR и 1 является лиганд-катионным каналом. Серотонин синтезируется из триптофана при помощи триптофангидроксилазы, а затем дополнительно декарбоксилазы ароматических кислот. Отсутствие 5-НТ у постсинаптических нейронов было связано с депрессией. Препараты, такие как Prozac и Zoloft, блокирующие пресинаптический серотониновый транспортер, используются для лечения некоторых заболеваний.

Связь

Нейроны «общаются» друг с другом через синапсы, при этом терминали аксона или en passant bouton (тип терминалей, расположенных вдоль длины аксона) одной ячейки связывают другой дендрит нейронов, сому или, реже, аксон. Нейроны, такие как клетки Пуркинье в мозжечке, могут иметь более 1000 дендритных ветвей, связывающих их с десятками тысяч других клеток; другие нейроны, такие как магноцеллюлярные нейроны супраоптического ядра, имеют только один или два дендрита, каждый из которых получает тысячи синапсов. Синапсы могут быть возбуждающими либо тормозящими, и могут либо увеличивать, либо уменьшать активность в целевом нейроне, соответственно. Некоторые нейроны также взаимодействуют через электрические синапсы, которые являются прямыми электрически проводящими переходами между клетками. В химическом синапсе, процесс синаптической передачи заключается в следующем: когда потенциал действия достигает терминали аксонов, он открывает потенциалзависимые кальциевые каналы, позволяя ионам кальция входить в терминаль. Кальций заставляет синаптические везикулы, заполненные молекулами нейротрансмиттера, сливаться с мембраной, высвобождая их содержимое в синаптическую щель. Нейротрансмиттеры диффундируют через синаптическую щель и активируют рецепторы на постсинаптическом нейроне. Высокий уровень цитозольного кальция в терминале аксона также вызывает поглощение митохондриального кальция, что, в свою очередь, активирует митохондриальный энергетический метаболизм для получения АТФ для поддержки непрерывной нейротрансмиссии 8). Человеческий мозг имеет огромное количество синапсов. Каждый из ста миллиардов нейронов имеют, в среднем, 7000 синаптических связей с другими нейронами. Было подсчитано, что мозг трехлетнего ребенка имеет около 1 квадриллиона синапсов. Это число уменьшается с возрастом, стабилизируясь по взрослой жизни. Оценки для взрослых отличаются, начиная от 100 до 500 трлн. 9).

Механизмы распространения потенциалов действия

В 1937 году Джон Захари Янг предположил, что гигантский аксон кальмара может быть использован для изучения электрических свойств нейронов. Будучи более крупными, но схожими по своей природе с человеческими нейронами, клетки кальмаров было легче изучать. Путем вставки электродов в аксоны гигантских кальмаров, были сделаны точные измерения мембранного потенциала. Клеточная мембрана аксона и сома содержит потенциалзависимые ионные каналы, которые позволяют нейрону генерировать и распространять электрический сигнал (потенциал действия). Эти сигналы генерируются и распространяются заряжающими ионами, включая натрий (Na +), калий (K +), хлорид (Cl-) и кальций (Ca2 +). Существует несколько стимулов, которые могут активировать нейрон, приводя к электрической активности, включая давление, растяжение, химические передатчики и изменения электрического потенциала на клеточной мембране. Стимулы вызывают выделение конкретных ионных каналов внутри клеточной мембраны, приводя к потоку ионов через клеточную мембрану, изменяя мембранный потенциал. Тонкие нейроны и аксоны требуют меньше метаболических затрат для создания и переноса потенциалов действия, но более толстые аксоны быстрее передают импульсы. Чтобы свести к минимуму расходы на метаболизм, сохраняя при этом высокую проводимость, многие нейроны имеют изоляционные оболочки миелина вокруг своих аксонов. Оболочки образованы глиальными клетками: олигодендроцитами в центральной нервной системе и клетками Шванна в периферической нервной системе. Оболочка позволяет потенциалам действиям двигаться быстрее, чем в немиелинизированных аксонах того же диаметра, при этом используя меньше энергии. Миелиновая оболочка в периферических нервах обычно протекает вдоль аксона в срезах длиной около 1 мм, перемежающихся неочищенными узлами Ранвье, которые содержат высокую плотность потенциалзависимых ионных каналов. Рассеянный склероз – это неврологическое расстройство, которое возникает в результате демиелинизации аксонов в центральной нервной системе. Некоторые нейроны не генерируют потенциалы действия, а вместо этого генерируют градуированный электрический сигнал, который, в свою очередь, вызывает градуированное высвобождение нейротрансмиттера. Такие нейроны, как правило, являются сенсорными нейронами или интернейронами, потому что они не могут переносить сигналы на большие расстояния.

Нейронное кодирование

Нейронное кодирование связано с тем, как сенсорная и другая информация представлена в мозге нейронами. Основная цель изучения нейронного кодирования состоит в том, чтобы охарактеризовать взаимосвязь между стимулом и индивидуальными или ансамблевыми нейронными ответами, а также отношения между электрическими действиями нейронов в этом ансамбле. Считается, что нейроны могут кодировать как цифровую, так и аналоговую информацию. 10)

Принцип «все или ничего»

Проведение нервных импульсов является примером реакции «все или ничего». Другими словами, если нейрон реагирует, он должен ответить полностью. Большая интенсивность стимуляции не дает более сильного сигнала, но может привести к более высокой частоте выстреливания. Существуют различные типы рецепторной реакции на стимул, медленно адаптируемые или тонические рецепторы реагируют на устойчивый стимул и дают устойчивую скорость выстреливания. Эти тонические рецепторы чаще всего реагируют на повышенную интенсивность стимула, увеличивая частоту выстреливания, обычно в качестве силовой функции стимула, нанесенного на импульсы в секунду. Это можно сравнить с внутренним свойством света, где для получения большей интенсивности конкретной частоты (цвета) должно быть больше фотонов, поскольку фотоны не могут стать «сильнее» для определенной частоты. Существует ряд других типов рецепторов, которые называются быстро адаптирующимися, или фазическими, рецепторами, у которых выстреливание уменьшается или останавливается при устойчивом стимуле; примеры включают в себя: кожа при касании объекта заставляет нейроны выстреливать, но, если объект поддерживает постоянное давление на кожу, нейроны прекращают выстреливать. Нейроны кожи и мышц, реагирующие на давление и вибрацию, имеют фильтрующие вспомогательные структуры, которые помогают им функционировать. Пациниальная оболочка – одна из таких структур. Он имеет концентрические слои, как у лука, которые образуются вокруг терминала аксона. В присутствии давления и при деформировании корпуса, механический стимул переносится на аксон, который выстреливает. Если давление устойчивое, стимул отсутствует; таким образом, как правило, эти нейроны реагируют на временную деполяризацию во время начальной деформации и снова, когда давление удаляется, что заставляет корпус снова менять форму. Другие типы адаптации важны для расширения функции ряда других нейронов 11).

История

Место нейрона в качестве основного функционального блока нервной системы было впервые признано в конце 19 века благодаря работе испанского анатома Сантьяго-Рамон-и-Кахаля 12). Чтобы сделать структуру отдельных нейронов видимой, Рамон-и-Кахаль улучшил процесс окрашивания серебром, который был разработан Камилло Гольджи. Улучшенный процесс включает в себя метод под названием «двойная пропитка», который используется до сих пор. В 1888 году Рамон-и-Кахаль опубликовал статью о птичьем мозжечке. В этой статье ученый говорит, что не смог найти доказательства анастомоза между аксонами и дендритами и называет каждый нервный элемент «абсолютно автономным кантоном». Это стало известно как доктрина нейрона, один из центральных принципов современной нейронауки. В 1891 году, немецкий анатом Генрих Вильгельм Вальдейер написал очень влиятельный обзор о доктрине нейронов, в котором он ввел термин «нейрон» для описания анатомической и физиологической единицы нервной системы. 13) Метод серебрения – чрезвычайно полезный метод нейроанатомических исследований, потому что, по неизвестным причинам, он окрашивает очень небольшой процент клеток в ткани, поэтому можно видеть полную микроструктуру отдельных нейронов без большого перекрытия с другими клетками в плотно упакованном мозге.

Нейронная доктрина

Нейронная доктрина – это фундаментальная идея о том, что нейроны являются основными структурными и функциональными единицами нервной системы. Теория была выдвинута Сантьяго-Рамоном-и-Кахалем в конце 19 века. Он считал, что нейроны являются дискретными клетками (не связанными в сеть), действующими как метаболически различные единицы. Более поздние открытия дали несколько уточнений простейшей форме доктрины. Например, глиальные клетки, которые не считаются нейронами, играют важную роль в обработке информации. Кроме того, электрические синапсы более распространены, чем считалось ранее 14), что означает наличие прямых цитоплазматических связей между нейронами. На самом деле, есть примеры нейронов, образующих еще более сильную связь: гигантский аксон кальмара возникает из слияния нескольких аксонов. Рамон-и-Кахаль также постулировал Закон динамической поляризации, в котором говорится, что нейрон принимает сигналы у своих дендритов и тела клетки и передает их, как потенциалы действия, вдоль аксона в одном направлении: от тела клетки 15). В Законе динамической поляризации есть важные исключения; дендриты могут служить синаптическими выходными участками нейронов, а аксоны могут принимать синаптические входы.

Нейроны в мозге

Количество нейронов в мозге резко варьируется у разных видов животных 16). Взрослый человеческий мозг содержит около 85-86 миллиардов нейронов, 16,3 миллиарда из которых находятся в коре головного мозга и 69 миллиардов – в мозжечке. В отличие от этого, нематод-червь Caenorhabditis elegans имеет всего 302 нейрона, что делает его идеальным экспериментальным предметом, поскольку ученые смогли отобразить все нейроны этого организма. Плодовая мушка Drosophila melanogaster, распространенный объект биологических экспериментов, имеет около 100000 нейронов и демонстрирует достаточно сложное поведение. Многие свойства нейронов, начиная от типа нейротрансмиттеров, используемых для формирования ионного канала, поддерживаются у разных видов, что позволяет ученым изучать процессы, происходящие в более сложных организмах, на гораздо более простых экспериментальных системах.

Неврологические расстройства

Амиотрофия Шарко-Мари-Тута – это гетерогенное наследственное расстройство нервов (нейропатия), которое характеризуется потерей мышечной ткани и ощущения прикосновения, преимущественно в ногах, а также в руках на поздних стадиях болезни. В настоящее время это заболевание является неизлечимым и одним из наиболее распространенных наследственных неврологических расстройств, которым страдает 37 из 100000 человек. Болезнь Альцгеймера (БА) является нейродегенеративным заболеванием, характеризующимся прогрессирующим ухудшением познавательной способности, а также снижением активности в повседневной жизни и нейропсихиатрическими симптомами или поведенческими изменениями. Наиболее ярким ранним симптомом БА является потеря кратковременной памяти (амнезия), которая обычно проявляется как незначительная забывчивость, которая становится все более выраженной с прогрессированием болезни с относительным сохранением более старых воспоминаний. По мере развития расстройства, когнитивные (интеллектуальные) нарушения распространяются на области языка (афазия), движения (апраксия) и узнавание (агнозия), а также на такие функции, как принятие решений и планирование. Болезнь Паркинсона (БП) является дегенеративным расстройством центральной нервной системы, которое часто ухудшает двигательные навыки и речь пациента. Болезнь Паркинсона относится к группе состояний, называемых двигательными расстройствами. Она характеризуется ригидностью мышц, тремором, замедлением физических движений (брадикинезия), а в крайних случаях – потерей физических движений (акинезия). Основные симптомы являются результатом снижения стимуляции моторной коры базальными ганглиями, что обычно вызвано недостаточным образованием и действием допамина, который вырабатывается в допаминергических нейронах головного мозга. Вторичные симптомы могут включать когнитивную дисфункцию высокого уровня и неявные языковые проблемы. БП является как хроническим, так и прогрессирующим заболеванием. Миастения – это нервно-мышечное заболевание, приводящее к колебательной мышечной слабости и утомляемости во время выполнения простых действий. Слабость обычно вызвана циркулирующими антителами, которые блокируют ацетилхолиновые рецепторы на постсинаптической нервно-мышечной линии, ингибируя стимулирующий эффект нейротрансмиттера ацетилхолина. Миастению лечат при помощи иммунодепрессантов, ингибиторов холинэстеразы и, в отдельных случаях, тимэктомии.

Демиелинизация

Демиелинизация – это потеря миелиновой оболочки, изолирующей нервы. Когда миелин распадается, проводимость сигналов вдоль нерва может быть нарушена или потеряна, а нерв, в конечном итоге, перестает работать. Это приводит к определенным нейродегенеративным расстройствам, таким как рассеянный склероз и хроническая воспалительная демиелинизирующая полинейропатия.

Аксональная дегенерация

Хотя большинство ответных реакций на повреждение включают в себя сигнализацию притока кальция для содействия повторному уплотнению отделенных частей, аксональные травмы первоначально приводят к острой дегенерации аксонов, представляющуют собой быстрое разделение проксимального и дистального концов в течение 30 минут после травмы. После этого наступает дегенерация с набуханием аксолемы, и, в конечном итоге, это приводит к образованию бусиноподобных структур. Гранулярный распад аксонального цитоскелета и внутренних органелл происходит после декомпозиции аксолемы. Ранние изменения включают накопление митохондрий в паранопальных областях в месте повреждения. Эндоплазматический ретикулум разрушается, а митохондрии разбухают, и, в конечном итоге, распадаются. Дезинтеграция зависит от убиквитиновой и кальпаиновой протеаз (вызванных притоком ионов кальция), предполагая, что аксональная дегенерация является активным процессом. Таким образом, аксон подвергается полной фрагментации. Этот процесс занимает около 24 часов в периферической нервной системе и длится дольше в ЦНС. В настоящее время неизвестно, какие сигнальные пути ведут к дегенерации аксолемы.

Нейрогенез

Было продемонстрировано, что нейрогенез может иногда возникать в мозге позвоночных взрослых, что привело к спорам в 1999 году 17). Более поздние исследования возраста нейронов человека свидетельствуют о том, что этот процесс происходит только у меньшинства клеток, и подавляющее большинство нейронов, содержащих неокортекс, были сформированы до рождения и сохраняются без замены. Тело содержит различные типы стволовых клеток, которые способны дифференцироваться в нейроны. В докладе, опубликованном в журнале Nature, было показано, что исследователи нашли способ трансформировать клетки кожи человека в рабочие нервные клетки, используя процесс, называемый трансдифференцировкой, в котором «клетки вынуждены принимать новые идентичности».

Регенерация нервов

Часто бывает возможно восстановление периферических аксонов, если они были разорваны.

:Tags

Список использованной литературы:


1) Nowakowski, R. S. (2006). «Stable neuron numbers from cradle to grave». Proceedings of the National Academy of Sciences. 103 (33): 12219–12220. doi:10.1073/pnas.0605605103. PMC 1567859 Freely accessible. PMID 16894140
2) Davies, Melissa (2002-04-09). «The Neuron: size comparison». Neuroscience: A journey through the brain. Retrieved 2009-06-20
3) Alvarez-Buylla A, Garcia-Verdugo JM (February 1, 2002). «Neurogenesis in adult subventricular zone». Journal of Neuroscience. 22 (3): 629–34. PMID 11826091. Retrieved 2009-06-20
4) Brunk, UT; Terman, A (1 September 2002). «Lipofuscin: mechanisms of age-related accumulation and influence on cell function.». Free radical biology & medicine. 33 (5): 611–9. doi:10.1016/s0891-5849(02)00959-0. PMID 12208347
5) Al, Martini, Frederic Et. Anatomy and Physiology' 2007 Ed.2007 Edition. Rex Bookstore, Inc. p. 288. ISBN 978-971-23-4807-5.
6) Wilson, Nathan R.; Runyan, Caroline A.; Wang, Forea L.; Sur, Mriganka (2012). «Division and subtraction by distinct cortical inhibitory networks in vivo». Nature. 488 (7411): 343–8. doi:10.1038/nature11347. PMC 3653570 Freely accessible. PMID 22878717
7) «Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat». Ykolodin.50webs.com. 2008-04-27. Retrieved 2013-02-16
8) Ivannikov, MV; Macleod, GT (Jun 4, 2013). «Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals». Biophysical Journal. 104 (11): 2353–61. doi:10.1016/j.bpj.2013.03.064. PMC 3672877 Freely accessible. PMID 23746507
9) Drachman D (2005). «Do we have brain to spare?». Neurology. 64 (12): 2004–5. doi:10.1212/01.WNL.0000166914.38327.BB. PMID 15985565
10) Thorpe, SJ (1990) Spike arrival times: A highly efficient coding scheme for neural networks. In R. Eckmiller, G. Hartmann, & G. Hauske (Eds.) Parallel processing in neural systems, Elsevier, pp. 91–94 ISBN 0444883908
11) Eckert, Roger; Randall, David (1983). Animal physiology: mechanisms and adaptations. San Francisco: W.H. Freeman. p. 239. ISBN 0-7167-1423-X.
12) López-Muñoz, F.; Boya, J.; Alamo, C. (16 October 2006). «Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal». Brain Research Bulletin. 70 (4–6): 391–405. doi:10.1016/j.brainresbull.2006.07.010. PMID 17027775
13) «Whonamedit - dictionary of medical eponyms». www.whonamedit.com. Today, Wilhelm von Waldeyer-Hartz is remembered as the founder of the neurone theory, coining the term «neurone» to describe the cellular function unit of the nervous system and enunciating and clarifying that concept in 1891.
14) Connors B, Long M (2004). «Electrical synapses in the mammalian brain». Annu Rev Neurosci. 27 (1): 393–418. doi:10.1146/annurev.neuro.26.041002.131128. PMID 15217338
15) Sabbatini R.M.E. April–July 2003. Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine, 17. Retrieved March 19, 2007
16) Williams RW, Herrup K (1988). «The control of neuron number». Annual Review of Neuroscience. 11 (1): 423–53. doi:10.1146/annurev.ne.11.030188.002231. PMID 3284447
17) Wadep, Nicholas (1999-10-15). «Brain may grow new cells daily». The New York Times. Retrieved 2013-02-16.
  • Поддержите наш проект - обратите внимание на наших спонсоров:

  • Отправить "Нейрон" в LiveJournal
  • Отправить "Нейрон" в Facebook
  • Отправить "Нейрон" в VKontakte
  • Отправить "Нейрон" в Twitter
  • Отправить "Нейрон" в Odnoklassniki
  • Отправить "Нейрон" в MoiMir
  • Отправить "Нейрон" в Google
  • Отправить "Нейрон" в myAOL
нейрон.txt · Последние изменения: 2017/05/31 22:29 — nataly